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Abstract
In the past, geotomographic imaging of phase velocity using Rayleigh waves has mostly relied upon

travel time data (or, equivalently, path-averaged phase velocity data). Over the last decade or two, the
wide availability of observations from well-calibrated seismometers has enabled the use of surface wave
amplitudes to supplement travel time data. Amplitudes vary in a heterogeneous Earth due to lensing effects,
with high velocity patches leading to defocusing and lower amplitudes and low velocity patches leading to
focusing and higher amplitudes. Amplitude data complements travel time data, because while the latter is
due to the phase velocity along the propagation path, the former is due to the second derivative of phase
velocity perpendicular to it. In this study, we quantify the benefit of supplementing traditional travel time
geotomography with amplitude data. Key to our formulation is the representation of the spatially-varying
phase velocity using cubic splines, which allow second derivatives to be stably and efficiently computed. We
find that high-quality (10 : 1 signal-to-noise ratio) amplitude data improves recovery of the phase velocity
by 95 % and poor-quality (1 : 1 s.n.r.) by 75 %. Furthermore, the improvement is excellent irrespective of
whether the azimuthal coverage of sources is poor or good, and irrespective of whether the data are sparse
and the problem underdetermined, or plentiful and overdetermined. We also examine the viability of a joint
inversion for phase velocity and intrinsic attenuation factor. This problem is not as well-behaved as the
velocity-only one. Its sensitivity to amplitude noise is higher, with 1 % amplitude noise leading to up to
4 % phase velocity error; furthermore, the attenuation factor is well-recovered only when the problem is
overdetermined. A squeezing analysis indicates that phase velocity and attenuation factor can significantly
trade off.
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1 Introduction

Rayleigh wave geotomography is a standard geophysical tool for imaging the ve-
locity structure of the Earth (e.g., Nishimura and Forsyth, 1989; Lee and Nolet, 1997; Li
and Detrick, 2006; Nettles and Dziewonski, 2008; Shen and Ritzwoller, 2016; Ekström,
2017). Most commonly, the quantity that is imaged is the phase velocity of the wave (or
its phase slowness, the reciprocal of velocity), viewed as a local property of a particular
place on the Earth’s surface, and at a particular frequency of observation. Rayleigh wave
phase velocity has a direct correlation to the shear wave velocity in the layers beneath the
Earth’s surface. Post-processing of images for a suite of frequencies allows determination
of three-dimensional shear velocity structure of the shallow part of the Earth. However,
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the phase velocity maps, themselves, are often used directly in more qualitative interpreta-
tions of Earth structure, because they are considered less prone to artifacts associated with
non-uniqueness. The most commonly used data are path averages of phase velocities, or
equivalently, travel times between sources (earthquakes) and receivers (seismometers), or
in the case of ambient noise studies, between pairs of receivers (e.g., Bensen et al., 2007;
Zha et al., 2014; Ekström, 2017). Another application of Rayleigh waves is the imaging
of the Earth’s attenuation structure (Dalton and Ekström, 2006a,b; Bowden et al., 2017;
Dalton et al., 2017). Here the attenuation factor (defined later), or equivalently, the quality
factor, is imaged. Attenuation factor is a quantity distinct from phase velocity that pro-
vides useful information about Earth structure, and especially about its thermal structure,
for attenuation factor increases strongly with temperature (e.g., Cammarano et al., 2003).

It has long been understood that seismic amplitudes depend on slowness, as well
as attenuation, through two effects (discussed further below), one related to lensing (geo-
metrical spreading) and the other to local conservation of energy. In their attenuation
inversion, Dalton and Ekström (2006b) account for these effects by correcting amplitude
data for them, using previously-published slowness maps derived from travel times, alone.
Furthermore, Dalton and Ekström (2006a) show that a global dataset of surface wave
amplitudes contains useful information about slowness. Their slowness image based on
amplitude data, only, bears a string resemblance to a slowness image derived from travel
times, alone.

These findings raise two interesting questions. The first is the viability of using travel
time and amplitude data together to determine slowness, under the assumption that the ef-
fect of attenuation on amplitudes are small. Such an assumption would be justified in some
areas of the Earth, such as cratons, where the attenuation factor is known by independent
means to be small (e.g., Cafferky and Schmandt, 2015). The advantage of using both data
types is that they are complementary, and may allow a higher-resolution image than can
be gained from travel times, alone. The second is whether a joint inversion for slowness
and attenuation factor is feasible, or rather, whether it is feasible when the travel time data
do not completely constrain the slowness image. In that case, one requires amplitude data
to do double-duty; on the one hand, they needs to supplement travel times in the slowness
inversion, on the other hand, they need to provide information about attenuation. Whether
it can do both is unclear.

We address these questions using a series of numerical experiments that allow us
to gauge the sensitivity of the geotomography to measures of data quality, such as noise
level, degree of over-determinedness, and angular spread of sources.

2 The physics underlying travel time and amplitude

Rayleigh surface waves are a dispersive phenomenon, with a phase slowness,
u(x,y,ω) that is a function of both geographical position, (x,y), and angular frequency,
ω . However, in this paper we assume that measurements are being performed at a specific
frequency, ω = ω0, isolated by Fourier transforming the seismograms. Consequently,
we drop explicit mention of frequency and write phase slowness simply as, u(x,y). For
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wavelengths small compared to the scale of smooth heterogeneities in phase slowness,
Rayleigh waves can be shown to obey the premise of classical ray theory: that the
wavefront advances in the (x,y) plane normal to itself at a speed given by the local phase
velocity, so that wavefront normals trace out ray paths (Wang and Dahlen, 1995). This
behavior leads to a two-dimensional version of the well-known ray equation (Aki and
Richards (2009); our Equation C.2).

Rayleigh waves have a complicated depth, z, dependence, but for large depths, their
decay is exponential. The decay rate can be shown to increase with phase slowness (Ap-
pendix, Section I); that is, Rayleigh wave energy is squeezed towards the surface as phase
slowness is increased (or, equivalently, as the velocity of the medium is decreased).

Under the ray approximation, travel time, T , increases along the ray according to
dT = u ds, where s is arc length, and the overall travel time is the integral of phase slow-
ness, u(x,y), along the ray path. The linear relationship between T and u explain why
most imaging uses slowness, as contrasted to velocity, v = 1/u as the imaged quantity; the
relationship between travel time and velocity are nonlinear.

This is a two-dimensional analog of the behavior of body waves under the ray
approximation. Supposing that a spatially-constant perturbation in phase slowness,
u = u0 +∆u, leads to travel time perturbation, T = T0 + ∆T , the ray integral implies
∆T/T0 = ∆u/u0. Consequently, in a heterogenous medium, travel time perturbations are
never larger than the largest slowness perturbation, |∆T |/T0 ≤ max |∆u|/u0 (when both
are measured in percent).

Under the ray approximation, phase slowness perturbations cause lensing (geo-
metrical spreading). Patches of locally high slowness cause rays to bend towards one
another (focusing) and patches of locally low slowness cause rays to bend away from one
another (defocusing) (Fig. 2.1A). As the time-averaged energy flux, ⟨F⟩, between neigh-
boring rays is constant, and as energy is proportional to the square of amplitude, A2, fo-
cusing causes amplitude to increase and defocusing causes it to decrease. This effect can
be quantified by the second derivative of the slowness, measured perpendicular to the ray
path (Dahlen and Tromp, 1998, and Appendix, Section I). A positive second derivative
corresponds to a patch of low slowness, which leads to defocusing and an amplitude de-
crease. A negative second derivative corresponds to a patch of high slowness, which leads
to focusing and an amplitude increase. An idiosyncrasy of focusing and defocusing is that
their effect on amplitudes is ‘non-local,’ in the sense that a perturbation in slowness can
lead to a perturbation in slowness that grows with distance. For instance, once an initially-
plane wave is defocused, the distance between neighboring rays increases indefinitely with
propagation distance, causing the amplitude to decrease indefinitely. Mathematically, this
effect is represented by the (s−s′) factor in Equation (C.18), which grows in proportion to
the distance between slowness perturbation and observer. Consequently, amplitude pertur-
bations |∆A|/A0, can be much larger than the slowness perturbations, |∆u|/u0, that cause
them.

In addition to being proportional to A2, energy flux depends on the phase slowness
of the wave and on local material properties such as density, ρ . This ‘local conservation of
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Fig. 2.1: (A) Rays (curved lines) are focused by high slowness regions (red), causing high amplitudes,
and defocused by low slowness regions (blue), causing low amplitudes. (A) Rays (lines) from a distant
earthquake, all with orientation, θ , impinging upon stations (dots).

energy’ effect is in addition to lensing, as can be understood by considering a case where
no lensing occurs, such as a plane wave normally incident upon a planar interface between
two different media.

Neglecting reflections, the energy flux on the two sides of the interface is equal.
Consequently, amplitude must change to balance changes in material properties and
phase slowness. For a plane shear wave in a homogeneous medium, the flux is
⟨F⟩ = 1

2ω2ρu−1A2 (Aki and Richards, 2009). The condition that the flux be constant
across an interface between media with two different phase slownesses (but the same
density) is ∂ ⟨F⟩/∂u = 0 or dA/A = γ du/u, with γ = 1

2 (see Appendix, Section I). The
situation for surface waves is more complicated, because the vertical distribution of
energy changes across the interface, too. It is shown in Section I of the Appendix that in
this case γ = 1 (where A now refers to the amplitude at z = 0).

Finally, Rayleigh waves lose amplitude by the process of anelastic attenuation; that
is, the passage of the wave causes inelastic deformation within the Earth that converts
elastic wave energy into heat. Because the mechanism is microscopic, the energy loss
due anelasticity need obey the principle that the effect of propagation through a dis-
tance, 2s, equals the effect of propagation through a distance, s, convolved with itself
(Richards and W. Menke, 1983). This condition implies that amplitude, A(ω), must
decay as A(ω) = A0 exp(−αs), where A0 is an initial amplitude and α is a decay rate
(or ‘attenuation factor’). In general, the attenuation factor may vary both with angu-
lar frequency, ω , and position, (x,y). In the context of ray theory, amplitude decays as
dA/A = dlnA = −α ds, where s is arc-length along the ray. Thus, lnA and −α in the
attenuation relationship play roles completely analogous to T and u in the travel time
relationship. Thus, measurements of amplitude can be used to image attenuation factor,
α(x,y) (for fixed angular frequency, ω0), in the same way that measurements of travel
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time, T , can be used to image slowness, u(x,y). As an aside, we note that some authors
use quality factor, Q, not attenuation factor, α , to quantify anelastic attenuation. They are
related by Q = 1

2ωu/α .
Images of attenuation factor provide information about the Earth that is complemen-

tary to images of slowness; taken together, they can provide more information about the
Earth than either does alone. For instance, although both an increase in temperature and
a decrease in chemical depletion can cause a region of high slowness, only the former
causes a region of high attenuation factor. An important difference between the imaging
of slowness and attenuation is that amplitude is affected by both slowness and attenuation,
while travel time is affected only by slowness. Consequently, imaging attenuation factor
more complicated than imaging slowness.

We now describe a set of numerical experiments designed to explore the viability
of two types of geotomography: (1) slowness-only geotomography using travel time and
amplitude data; and (2) joint slowness-attenuation-factor geotomography using travel time
and amplitude data.

3 Design of numerical experiments

We consider a rectangular study region in which spatially-varying slowness and at-
tenuation factor are the unknown model parameters. The rectangular region contains re-
ceivers (seismometers) at which travel time and amplitude of Rayleigh waves are mea-
sured. The sources (earthquakes) are outside of – and distant from – the study region, so
that rays impinging upon the study region are parallel (that is, plane waves). This geome-
try is similar to the one used by Li and Detrick (2006) in their study of Rayleigh waves in
Iceland.

In actual practice, seismic surface wave studies are conducted over a wide range of
scale, from global studies tens of thousands of kilometers in scale utilizing frequencies of a
few mHz (e.g., Nettles and Dziewonski, 2008) to environmental studies just tens of meters
in scale utilizing frequencies of tens of Hz (e.g., West and W. Menke, 2000). Consequently,
we do not assign any realistic distance units to our models. Instead, a pixel is taken to be
1× 1 distance units in size. Similarly, as slowness can be measured in a variety of units
(e.g., s/km, ms/m, etc.) we do not assign realistic slowness units, either. To simplify
plotting, we assign the background slowness to be 5 units, and perturbations in slowness
to have an absolute maximum of 1 unit. This leads to a ±20 % variation in slowness, which
is about the maximum encountered in realistic applications. We choose the background
value of the attenuation factor so that the decrease in amplitude across the study region is
no more than a factor of ten, in keeping with the reality that very-highly-attenuated waves
in practice are unobservable. Modeled signal-to-noise levels were informed by the fact
that travel times can be measured much more accurately than amplitudes. Modern cross-
correlation techniques can reduce travel time error to less than 0.01 % (Waldhauser and
Ellsworth, 2000), whereas we infer from the stated error levels in Dalton and Ekström
(2006b) that achieving an error of 1 % for amplitudes is challenging. Most of our images
consist of a 21×21 grid of pixels. This number is a compromise between having enough



8 William Menke and Charlotte Rhoads

pixels to represent non-trivial patterns in u(x,y) and α(x,y) and computation time (which
grows with the number of unknown pixels).

A smooth representation of slowness is vital for properly computing the effect of
lensing (geometrical spreading), because stable estimates of the second derivative are
needed. We use the form of cubic interpolation described by Keys (1981) to represent
slowness and attenuation factor. This method represents a smooth function by a rect-
angular, Nx ×Ny grid of control points, with uniform spacing (∆x,∆y) on the intervals
0 ≤ x ≤ xmax and 0 ≤ y ≤ ymax. Consequently, the total number of slowness model pa-
rameters is NxNy and attenuation factor control points is NxNy. The total number of model
parameters is either M = NxNy, when only slowness is estimated, or M = 2NxNy, when
both slowness and attenuation factor are estimated. Only the 4× 4 grid of control points
surrounding a given point, (x0,y0), contributes the estimate of the function and its deriva-
tives at that point, so the interpolation is a ‘local’ one. The spacing of the control points
imposes smoothness on the estimated solution, making other forms of smoothness regu-
larization unnecessary. Although the interpolated function can be evaluated indefinitely
finely, allowing for high-resolution images, here we present only images with grid spacing
(∆x,∆y); that is, images of the control points.

We use simple slowness and attenuation factor test functions, chosen to make easy
visual assessment of the success of an experiment (Fig. 3.1):

u(x,y) = u0 +u1 sin
(

πx
xmax

)
sin
(

πy
ymax

)
α(x,y) = α0 +α1 sin

(
2πx
xmax

)
sin
(

πy
ymax

) (3.1)

Fig. 3.1: Test images of (A) slowness, u(x,y) and (B) attenuation, α(x,y) that are used in the numerical
experiments. Each image has 21×21 = 441 pixels.
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Our experiments have Nr receivers (seismometers), randomly drawn from a 2D uni-
form distribution on (∆x,∆y), and Nθ sources (earthquakes), whose azimuths, θ , is are
randomly drawn on a uniform distribution on the interval, 0 ≤ θ < θmax. In most exper-
iments, we set θmax = 360◦, but sometimes we use a smaller value that corresponds to
a suboptimal arrangement of sources. As each source-receiver combination contributes
two data, travel time and amplitude, the number of data in an experiment is N = 2NrNθ .
We compute these data numerically, according to the physics described in the previous
section, and perturb them with normally-distributed random noise, to simulate real data
(Fig. 3.2).

Fig. 3.2: Exemplary Earth model and corresponding data. (A) Slowness anomaly, ∆u/u0 (colors), showing
rays (curves) from a distant earthquake propagating in the y-direction. (B) Attenuation anomaly, ∆α/α0.
(C) Traveltime anomaly, ∆T/T0. (D) The part of the amplitude anomaly, ∆A/A0 due to conservation of
energy (CoE). (E) The part of the amplitude anomaly, ∆A/A0 due to geometrical spreading. (E) The part of
the amplitude anomaly, ∆A/A0 due to intrinsic attenuation.

The goal in geotomography is to estimate the model parameters (slowness and at-
tenuation factor control points, generically the vector, m) from the data (travel time and
amplitudes, generically the vector, d). This is enabled through writing the relationships:

travel time = ray integral of slowness

amplitude = ray integral of second derivative of slowness

+ slowness perturbation at the receiver

+ ray integral of attenuation factor

(3.2)

as a matrix equation of form, Gm = d (Appendix, Section L). Each row of this equation
presents a so-called sensitivity kernel; that is, the relationship between a travel time or am-
plitude measurement and the values of all of the control points. Because the data depend
only on control points near the ray path, the sensitivity kernel (row of G), when plotted
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in (x,y), has the form of a narrow band centered on the ray path. The equation, Gm = d,
is solved in the least squares sense. We use the damped least squares solution (Appendix,
Section L), because it can handle the case where some control points are not constrained
by data by forcing them to the background value. Construction of the matrix equation is
facilitated by the simple form of the cubic interpolation algorithm; the relationship be-
tween the value of a function and its derivatives and the values of the control points are
simple linear algebraic formula of known form. The solution of the least squares equation
is facilitated by G being sparse (most elements are zero).

Fig. 3.3: Exemplary sensitivity kernels (colors) for a single ray path (dotted line) to a receiver (star). (A) Sen-
sitivity of travel time to slowness. (B) Sensitivity of amplitude to slowness. The sensitivity of amplitude to
attenuation is identical to (A), except its sign is reversed.

Experiments Set A, concerning inversions for velocity (or slowness), only. This
set of experiments addresses the advisability of supplementing travel time inversions with
amplitudes, when the unknowns are the spatially-varying pattern of phase slownesses. In
the best-case scenario of a large number (2× overdetermined) of low-noise (1 %) data,
travel time data alone, amplitude data alone, and both data types used together all lead to
high-quality slowness images (not shown). Note that the local conservation energy effect
regularizes the amplitude-only inversion. Without it, the data would only depend on the
2nd derivative of the slowness, and a linear term could not be resolved in the image.

Experiment A.1, to assess the effect of amplitude noise on the quality of the solu-
tion. In this experiment, we hold the travel time noise constant, at 0.1 % and the perform
a sequence of geotomographic inversions in which the amplitude noise is increased from
0.1 % to 1000 %. Ten travel time only inversions and ten travel time and amplitude inver-
sions are performed at each noise level, with randomly-drawn earthquake source azimuths,
receiver locations and noise values, and the median improvement of the estimated phase
velocity models is tabulated. The median improvement is a near-constant 90 % for noise
levels below 20 % and slowly falls off at higher noise levels, becoming negligibly small
beyond about 300 % (Fig. 3.4A). This behavior indicates that even moderately noisy am-
plitude data, with noise levels in the 10 % – 100 % range can substantially improve the
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results of an inversion.

Fig. 3.4: Slowness-only inversion. (A) Percent improvement in slowness image recovery, as a function of
noise in the amplitude data. The image contains 21×21 pixels and the number of stations and the number
of earthquakes both are equal to L = 30. The travel time noise level is held fixed at 0.1 %. The improvement
is relatively insensitive to noise level, for levels less 100 %. (B) Percent improvement in slowness image
recovery, as a function of angular coverage of earthquake sources. The image contains 21× 21 pixels, the
number of stations is 81 and the number of earthquakes is 10. The travel time and amplitude noise levels are
held fixed at 1 %.

Experiment A.2, to assess the ability of amplitude data to improve an inversion
when the azimuthal spread of earthquake sources is poor. In this experiment, we hold
the travel time and amplitude noise constant at 1 % and the perform a sequence of geoto-
mographic inversions in which the azimuth interval in increased from ten degrees to 360
degrees. Ten travel time only inversions and ten travel time and amplitude inversions are
performed for each azimuth range, with randomly-drawn earthquake source azimuths, re-
ceiver locations and noise values, and the median improvement of the estimated phase
velocity models is tabulated. The improvement increases from about 40 % for small
azimuthal intervals to about 90 % at the larger (Fig. 3.4B). This behavior indicates that
even amplitude data can substantially improve the results of an inversion, irrespective of
whether the azimuthal coverage of sources is poor or excellent. In particular, the 40 %
improvement in the poor-range coverage is especially important, for the travel time only
inversion (not shown) is especially poor in this case.

Experiment A.3, to assess the ability of amplitude data to improve an inversion
when the number of data is low. In this experiment, we hold the travel time and amplitude
noise constant at 1 % and 0.1 %, respectively, and the perform a sequence of geotomo-
graphic inversions where the number of data are slowly increases, from a low number to
a high one, bracketing the number, L2 = 441, at which the travel time only inversion is
even determined. Ten inversions are performed for each case, with randomly-drawn earth-
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quake source azimuths, receiver locations and noise values, and the median improvement
of the estimated phase velocity model is tabulated. The median improvement rises from
about 10 %, when the inversion is very underdetermined, to about 90 % when it is very
overdetermined (Fig. 3.5). Of special interest are cases where the travel time inversion is
close to even-determined, for then the travel time and amplitude inversion is visibly much
better than the travel time only one. In practice, most inversions are close to being even-
determined, because those designing them often seek the highest resolution (and hence the
most model parameters) that their dataset possibly can support. The addition of amplitude
data leads to marked improvement in these cases.

Overall, this set of experiments illustrates the advisability of supplementing travel
time inversions with amplitudes. It leads to markedly improved phase velocity estimates,
even when the amplitude noise level is moderately high, and when the number of data or
their azimuthal coverage is poor.
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Fig. 3.5: Slowness-only inversion. Slowness image improvement when amplitude data is added to a travel
time inversion, as a function of the number of data added. The image contains M = 21×21 model parameters
and the number of stations and the number of earthquakes both are equal to L. The travel time and amplitude
noise levels are held fixed at 1 % and 0.1 %, respectively. The number of travel time data equals the number
of model parameters when L = 21 (blue arrow). (A) Inversion using travel time data, only, for selected
values of L. The true image (not shown) is indistinguishable from the L = 100 case. (B) Inversion using
both travel time and amplitude data, only, for selected values of L. Note improvement compared to (A).
(C) Percent improvement in slowness image recovery as a function of L. (D) Ray paths corresponding to the
images in (A) and (B), colored according to their travel times.

Experiments Set B, concerning joint inversions for spatially-varying phase slow-
ness and attenuation factor. This set of experiments addresses the performance of such
inversions in the presence of noise and the degree to which phase slowness and attenua-
tion factor trade off.

Experiment B.1, to assess the effect of amplitude noise on the quality of the solu-
tion. In this experiment, we hold the travel time noise constant, at 0.1 % and the perform
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a sequence of geotomographic inversions in which the amplitude noise is increased from
0.1 % to 1.3 %. One inversion is performed at each noise level, with randomly-drawn
earthquake source azimuths, receiver locations and noise values, and the median improve-
ment of the estimated attenuation factor model is tabulated. In all cases, the phase slow-
ness model is well-recovered (Fig. 3.6). However, at the higher noise levels, the error in
the attenuation model can be very significant. This error grows with amplitude noise level
at roughly a 1:1 rate, but with occasional much worse outliers (Fig. 3.6C). This behavior
indicates that noisy amplitude data is of very little utility in a joint inversion.

Fig. 3.6: Robustness of joint inversion for slowness and attenuation in the presence of noise. (A) Result of
inversion, when the noise level of the amplitude data is 0.1 %. These images are indistinguishable from the
true images (not shown). (B) Model error (red circles) as a function of amplitude noise level, with median
curve (black). (C) Result of inversion, when the noise level of the amplitude data is 1.3 %.

Experiment B.2, to assess the ability of amplitude data to improve an inversion
when the number of data is low. In this experiment, we hold the travel time and amplitude
noise constant at 1 % and 0.1 %, respectively, and the perform a sequence of geotomo-
graphic inversions where the number of data, N, are slowly increased but the number of
model parameters, M, is held constant, bracketing the N/M = 1 even-determined case.
One inversion is performed for each case, with randomly-drawn earthquake source az-
imuths, receiver locations and noise values, and the error of the attenuation factor model is
tabulated. The error is large (< 50 %) for cases with low number of data (N/M < 3), and
then dramatically falls off to < 5 % above that value (Fig. 3.7). This result suggests that
joint inversion is only viable for very overdetermined problems, that is, when the num-
ber of travel time and amplitude data greatly exceed the number of phase slowness and
attenuation factor model parameters.

Experiment B.3, to assess how phase slowness and attenuation factor trade off in
joint inversions. We employ the ‘squeezing procedure’ (Lerner-Lam and Jordan, 1987;
W. Menke, 2018) to address this issue. A damping factor is introduced into the inversion
that penalizes deviations of the attenuation factor from the background level, and this
factor is successively increased, to ‘squeeze’ spatially-varying structure into the phase
slowness (Fig. 3.8). Squeezed solution typically have higher prediction error than un-
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Fig. 3.7: Comparison of slowness-only and joint slowness-attenuation inversions. (A) Slowness inversion
(top), using travel times only, and attenuation inversion (bottom), using amplitudes only, with N data and M
model parameters, and N/M = 0.2. The results are almost indistinguishable from the true images (Fig. 2.1).
(B) Joint slowness-attenuation inversion for N/M = 0.2. Note that both the slowness and attenuation images
are poorly recovered. (C) Attenuation model error (red circles) for a suite if randomly generated models,
as a function of N/M, with median curve (black). (D) Slowness inversion, using travel times only, and
attenuation inversion, using amplitude data only, for a large number of data (N/M = 6.0). (E) Joint slowness-
attenuation inversion for N/M = 6.0. Both slowness and attenuation are well-recovered.

squeezed ones. We find that almost all the spatial variability of the attenuation factor can be
squeezed away, with a corresponding 3× increase in travel time prediction error and 10×
increase in amplitude prediction error. The resulting phase slowness image is incorrect,
but still spatially coherent and similar in some respects to the true one. In a real-world
application, damping factors needs to be introduced to ‘normalize’ for the relative size of
the slowness and attenuation model parameters, and their choice is typically somewhat
subjective. The increase in prediction error associated with over-damping the attenuation
factor is significant, but still small enough that it might be mistaken for observational error
in a real-world application, leading to poor solution. Consequently, a suite of damping
factors should always be investigated when performing joint inversions.

Overall, this set of experiments illustrates that joint inversions are not viable except
when problem is very overdetermined (by a factor of > 3; see Fig. 3.7C) and when the
amplitude noise level is very low (say < 10 %). Even then, significant trading off of the
phase slowness and attenuation factor parts of the solution may occur.
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Fig. 3.8: Squeezing of attenuation in joint slowness-attenuation inversions. (A) Reference case for minimal
squeezing (amplitude damping factor of lnεα = 20.1). The number of stations and the number of earth-
quakes both are equal to L = 40 (N/M ≈ 5). The travel time and amplitude noise levels are 0.1 % and
1 %, respectively. Estimated 21×21 pixels images of slowness (top) and attenuation (bottom) are visually
identical to the true images (Fig. 3.3). (B) Increase in travel time error (top) and amplitude error (bottom) as
the amplitude damping factor, εα , is increased. (C) Estimated slowness (top) and attenuation (bottom) for
strong amplitude damping of lnεα = 24.7, which results in the attenuation image having no spatial variabil-
ity. Note that the slowness image is still reasonably well-recovered.
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4 Discussion and conclusions

Our results indicate that the addition of amplitude data to travel time data can sub-
stantially improve determinations of Earth structure in Rayleigh wave geotomography,
when phase slowness (or, equivalently phase velocity) is the parameter that is being im-
aged. The underlying reason is that amplitudes are sensitive to the behavior of the phase
slowness perpendicular to the ray path, whereas travel times are sensitive to it behavior
along the ray path. The two are complimentary. Significant improvement occurs even
when the amplitude data a very noisy (1:1 signal to noise ratio), when the azimuthal pat-
tern of ray paths is poor, and when the overall amount of data is low and the problem
underdetermined.

The prospect for joint imaging of travel time and attenuation factor is not as favor-
able. Our experiments produce faithful images of the two only when problem is overde-
termined (by a factor of 3) and at high signal-to-noise ratios (> 10 : 1). Squeezing exper-
iments indicate that travel time and attenuation factor partially trade off, in the sense that
it is possible to erroneously ‘map’ attenuation structure into the slowness image with only
a modest increase in data misfit. These findings validate the Dalton and Ekström (2006b)
approach to attenuation factor geotomography, in which a slowness image based exclu-
sively on travel times is used to ‘correct’ an amplitude dataset for geometric spreading and
local conservation of every effects, before it is used in an attenuation factor geotomogra-
phy.
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Appendix A. Sensitivity kernels

In ray theory, the sensitivity kernel, g(s,s′), relates a small change, δD in a datum,
D, to a small change, δw, in a material property, w, via the ray integral

δD(s) =
∫ s

0
g(s,s′)δw(s′) ds′ . (A.1)

Here, s is arc-length along the ray and the integral represents a path integral along the ray
from its start at 0 to its end at s. Sensitivity integrals are commonly used in linearized
inversions to reconstruct w from observations of D.
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Appendix B. Sensitivity kernel for travel time

The sensitivity integral that relates travel time, t, to slowness (reciprocal velocity),
u, is (e.g., Cerveny, 2001; Aki and Richards, 2009; W. Menke, 2020)

δ t(s) =
∫ s

0
1δu(s′) ds′ . (B.1)

In this case, the sensitivity kernel is unity.

Appendix C. Sensitivity kernel for geometrical spreading amplitude

Here, we derive the sensitivity kernel that relates a small change in ray theoretical
amplitude, A, to a small change in slowness, u. This derivation is similar to one provided
by Dahlen and Tromp (1998), but makes different assumptions about the geometry of the
measurements. In particular, slowness is considered to be a two-dimensional Cartesian
field and the incident wave is assumed to be planar.

The derivation starts with the equation for ray with position, x(s), arc-length, s,
propagating through a medium with slowness, u(x) (Aki and Richards, 2009) (Fig. C.1):

d
ds

u
dx
ds

= ∇u, or, equivalently,
d2x
ds2 +

dx
ds

(
dx
ds

· 1
u

∇u
)
=

1
u

∇u (C.1)

Fig. C.1: Ray geometry used to quantify the lensing effect. Two parallel rays, propagating in the ζ -direction,
have an initial separation, ∆ξ0. Their ray tangents, t̂, are parallel. After propagating an arc-length, s, through
a medium with a spatially-varying slowness perturbation, εu1, where ε is a small number, the rays are no
longer parallel and their separation has become ∆ξ0 + ε∆ξ1.

A quantity, f ≡ lnu, is defined, so that ∇ f = u−1∇u. The ray equation becomes

d2x
ds2 +

dx
ds

(
dx
ds

·∇ f
)
= ∇ f . (C.2)

Later, we will assume that the plane wave is propagating in the ζ -direction, with the ray-
perpendicular coordinate, ξ . The quantity f (ζ ,ξ ) is written as a constant background
part, f0, plus a small spatially-varying part, ε f1, where ε is a small parameter. Expanding
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f1 in a Taylor series and keeping the first three terms yields

f = f0 + ε f1 = f0 + εbξ (ζ )ξ +
1
2

εCξ ξ (ζ )ξ
2 and ∇ f = ε

[
dbζ/dζ +(dCξ ξ/dζ )ξ

bξ +Cξ ξ ξ

]
.

(C.3)
Here, bξ ≡ ∂ f/∂ξ and Cξ ξ ≡ ∂ 2 f/∂ξ 2 are the first and second derivatives, respectively.
We now treat the case of initially-parallel rays; that is, a plane wave. The position vector
for a ray that is initially parallel to the ζ -direction is written as the sum of an unperturbed
part (with subscript 0) and a perturbed part (with subscript 1). Because dx/ds is a unit
vector that initially is [ζ ,ξ ]⊺ = [1,0]⊺, only its ξ -component can have a first order pertur-
bation. Position along the ray, and its derivatives, are

x =

[
ζ0(s)

ξ0 + εξ1(s)

]
, and

dx
ds

=

[
dζ0/ds

ε(dξ1/ds)

]
, and

d2x
ds2 =

[
d2

ζ0/ds2

ε(d2
ξ1/ds2)

]
. (C.4)

The second term on left-hand side of ray equation becomes

dx
ds

·∇ f =
[

dζ0/ds
ε(dξ1/ds)

]
· ε
[

dbζ/dζ +(dCξ ξ/dζ )y0 + ε(dCξ ξ/dx)
bξ +Cξ ξ ξ0 + εCξ ξ ξ1

]
= ε

(
dζ0

ds

)(
∂bζ

∂ζ
+

(
∂Cξ ξ

∂ζ

)
ξ0

)
+O(ε2) ,

(C.5)

from whence we find

dx
ds

(
dx
ds

·∇ f
)
=

[
ε(dζ0/ds)2

O(ε2)

](
∂bζ

∂ζ
+

(
∂Cξ ξ

∂ζ
ξ0

))
+O(ε2) . (C.6)

Then, the ray equation, written to first order in ε , is[
d2

ζ0/ds2

ε
(
d2

ξ1/ds2)]+[ε(dζ0/ds)2

O(ε2)

](
∂bζ/∂ζ +(∂Cξ ξ/∂ζ )ξ0

)
= ε

[
∂bζ/∂ζ +(∂Cξ ξ/∂ζ )ξ0

bξ +Cξ ξ ξ0

]
.

(C.7)

The zeroth order ray equation,

d2
ζ0

ds2 = 0 , has solution ζ0(s) = s and
dζ0

ds
= 1 . (C.8)

This solution represents a plane wave propagating in the ζ -direction. First order ray equa-
tions for two rays initially at ξ A

0 and ξ B
0 , respectively, are:

d2
ξ A

1
ds2 = bξ +Cξ ξ ξ

A
0

d2
ξ B

1
ds2 = bξ +Cξ ξ ξ

B
0

(C.9)



Use of Amplitudes in Velocity and Joint Velocity-Attenuation Surface Wave Geotomography 21

Subtracting Equation (C.9) for the difference, ∆ξ , yields

d2
∆ξ1

ds2 =Cyy∆ξ0 , (C.10)

with ∆ξ ≡ ξ B −ξ A = (ξ B
0 −ξ A

0 )+ ε(ξ B
1 −ξ A

1 )≡ ∆ξ0 + ε∆ξ1.
Integrating this equation twice yields:

d∆ξ1

ds
= ∆ξ0

∫ s

0
Cξ ξ (s

′) ds′ (C.11)

∆ξ1 = ∆ξ0

∫ s

0

[∫ s′

0
Cξ ξ (s

′′) ds′′
]

ds′ or
∆ξ1

∆ξ0
=
∫ s

0

[∫ s′

0
Cξ ξ (s

′′) ds′′
]

ds′ (C.12)

In the next section, the iterated integral is shown to be equivalent to the single integral

∆ξ1

∆ξ0
=
∫ s

0
[s− s′]Cξ ξ (s

′) ds′ . (C.13)

For constant Cξ ξ , the quantity, ∆ξ1/∆ξ0, grows or shrinks with distance, depending upon
the sign of Cξ ξ . This effect corresponds to ray divergence and convergence. Because
energy is confined to the ray tube, for propagation in two dimensions, the energy density,
E, of the wave is proportional to the reciprocal of the cross-sectional of the ray tube:

E
E0

=
∆ξ0

∆ξ0 +∆ξ1
=

[
1+

∆ξ1

∆ξ0

]−1

(C.14)

Because the amplitude, A, of a wave is proportional to the square root of its energy density
we have

A
A0

∝

[
1+

∆ξ1

∆ξ0

]−1/2

≈ 1− 1
2

∆ξ1

∆ξ0
. (C.15)

Writing A = A0 +∆A, we find:
∆A
A0

≈−1
2

∆ξ1

∆ξ0
(C.16)

Equations (C.13) and (C.16) can be combined into a sensitivity integral relating a pertur-
bation, δu, in slowness to a perturbation, δ (∆A/A0), in amplitude:

δa(s)≡ δ

(
∆A(s)

A0

)
=
∫ s

0

{
−1

2
[s− s′]

∂ 2

∂ξ 2

}
δu(s′) ds′ (C.17)

Here we have abbreviated ∆A(s)/A0 as a(s). Consequently, the kernel is

g(s,s′) =−1
2
[s− s′]

∂ 2

∂ξ 2 . (C.18)
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Appendix D. Identity involving an iterated integral

The proof that

∫ s

0

[∫ s′

0
f (s′′) ds′′

]
ds′ =

∫ s

0
[s− s′] f (s′) ds′ (D.1)

makes use of the Heaviside step function H(s2− s1), defined to be unity when s2 > s1 and
zero otherwise. This allows the top limit in the inner integral to be increased to s:

I(s)≡
∫ s

0

[∫ s′

0
f (s′′) ds′′

]
ds′ =

∫ s

0

[∫ s

0
H(s′− s′′) f (s′′) ds′′

]
ds′ (D.2)

Then, the order of the arguments in the Heaviside function are reversed, using the identity
H(s′− s′′) = 1−H(s′′− s′).

I(s) =
∫ s

0

[∫ s

0

{
1−H(s′′− s′)

}
f (s′′) ds′′

]
ds′ (D.3)

Then, the order of integration is swapped:

I(s) =
∫ s

0

[∫ s

0

{
1−H(s′′− s′)

}
ds′
]

f (s′′) ds′′ (D.4)

The inner integral can now be performed analytically, yielding

I(s) =
∫ s

0
(s− s′′) f (s′′) ds′′ . (D.5)

Appendix E. Relationship between second derivatives of f and u

Tomography requires the derivative Cyy = ∂ 2 f/∂y2, where f = ln(u) is approxi-
mated as a linear operator acting on slowness, u. We use the approximation ln(1+ t)≈ t,
valid when |t| ≪ 1 to develop such a relationship. Suppose that u = u0 +∆u, where u0 is
a constant, average value, and ∆u is spatially varying and small compared to u0. Then:

f = ln(u0 +∆u) = ln
[

u0

(
1+

∆u
u0

)]
= ln(u)+ ln

(
1+

∆u
u0

)
≈ ln(u)+

∆u
u0

(E.1)

Here we have used the identity ln(ab) = ln(a)+ ln(b). Because only ∆u is spatially vari-
able,

∂ 2 f
∂ξ 2 =

1
u0

∂ 2∆u
∂ξ 2 =

1
u0

∂ 2u
∂ξ 2 . (E.2)

A numerical test (not shown) indicates that this formula is reasonably accurate for the
tomographic application developed here.
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Appendix F. Rotation of second derivative to ray coordinates

In practice, the symmetric matrix, D, of second derivates is first computed:

D =


∂ 2u
∂x2

∂ 2u
∂x∂y

∂ 2u
∂x∂y

∂ 2u
∂y2

 (F.1)

Then, the derivative, d2u/dξ 2, that appears in the sensitivity integral is inferred from D.
Suppose that the ray direction, ζ , is oriented an angle, θ , counter-clockwise with respect to
the x-axis. In the special case of θ = 0, we find ∂ 2u/∂ξ 2 = ∂ 2u/∂y2 = D22. In the general
case of θ ̸= 0, the matrix D needs to be rotated to a new primed coordinate system:

D′ = RDR⊺ with R =

[
cosθ −sinθ

sinθ cosθ

]
(F.2)

The second derivative in the ξ direction is identified as D′
22, or:

d2u
dξ 2 = sin2

θ
d2u
dx2 +2sinθ cosθ

d2u
dx dy

+ cos2
θ

d2u
dy2 (F.3)

Appendix G. Sensitivity kernel for intrinsic attenuation

Rock friction causes intrinsic attenuation; that is, the loss amplitude of a wave with
distance travelled. The decrease in amplitude is calculated as (Aki and Richards, 2009)

ln
(

A(s)
A0

)
=
∫ s

0
(−α) ds′ . (G.1)

The attenuation factor, α(x,y), is a material property that quantifies the rate of loss of am-
plitude with distance traveled. It is related to the quality factor, Q, and angular frequency,
ω , of the wave, by α = (1

2ωu0)/Q. In many instances, the energy loss is small, so that

ln
(

A
A0

)
= ln

(
A0 +∆A

A0

)
= ln

(
1+

∆A
A0

)
≈ ∆A

A0
. (G.2)

Here, we used the approximation ln(1+t)≈ t, valid when |t|≪ 1. The sensitivity equation
is then

δa(s) =
∫ s

0
(−1)δa ds′ , (G.3)

and the sensitivity kernel is (−1). Although they act on different material properties, the
sensitivity kernels for travel time and amplitude loss by rock friction differ only by a sign.
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Appendix H. Interpolation scheme and sensitivity derivatives for control points

Slowness, u, and attenuation, α , are represented on Mx ×My Cartesian grids of con-
trol points, uij = u(xi,yj) and αij = α(xi,yj), with uniform spacing, ∆x and ∆y. A convo-
lutional form of cubic interpolation, due to Keys (1981), is used to estimate the slowness
and attenuation, uest and αest, at an arbitrary point (x,y) within the grid. Slowness inter-
polation is treated here; attenuation interpolation is analogous. The process begins with
the identification of a 4× 4 grid of control points, such that (x,y) lies within its central
square. The control points in this 4×4 grid are denoted u−1,−1 through u2,2, and comprise
the 4×4 matrix, U. The coordinate system is then shifted and rescaled, so that the central
square covers the intervals 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and so that ∆x̂ = ∆ŷ = 1.

A vector, b, is then formed by applying an interpolant to the rows of U:

b⊺ = f⊺(x̂)MU with f(x̂) =
1
2
[1, x̂, x̂2, x̂3]⊺ (H.1)

and M =


0 2 0 0

−1 0 1 0
2 −5 4 −1

−1 3 −3 1

 and U =


u−1,−1 u−1,0 u−1,1 u−1,2

u0,−1 u0,0 u0,1 u0,2

u1,−1 u1,0 u1,1 u1,2

u2,−1 u2,0 u2,1 u2,2

 .

This process creates estimates of slowness at (x̂, ŷj), where ŷj are the ŷ-coordinates of the
control points. Then, a similar interpolant is applied to the elements of b:

uest(x̂, ŷ) = f⊺(ŷ)Mb = f⊺(x̂)MUM⊺f(ŷ) with f(ŷ) =
1
2
[1, ŷ, ŷ2, ŷ3]⊺ (H.2)

This process creates an estimate of slowness, uest(x̂, ŷ). Issues arise when U must be ex-
tracted from near the edges of the overall uij grid, because then one of its rows or columns
(or both) is undefined. We fill them in via linearly interpolation, using the two adjacent
rows or columns (or both) of U. This procedure forces the second derivative of uest(x̂, ŷ)
to be close to zero at the boundaries of the overall grid.

Spatial derivatives can be formed by analytic differentiation of the interpolation for-
mula:

∂uest

∂x
= (∆x)ḟ⊺(x̂)MUM⊺f(ŷ) and

∂uest

∂y
= (∆y)f⊺(x̂)MUM⊺ḟ(ŷ) (H.3)

∂ 2uest

∂x2 = (∆x)2f̈⊺(x̂)MUM⊺f(ŷ) and
∂ 2uest

∂y2 = (∆y)2f⊺(x̂)MUM⊺f̈(ŷ)

and
∂ 2uest

∂x∂y
= (∆x∆y)ḟ⊺(x̂)MUM⊺ḟ(ŷ)

with ḟ(x̂) =
1
2
[0,1,2x̂,3x̂2]⊺ and ḟ(ŷ) =

1
2
[0,1,2ŷ,3ŷ2]⊺

and f̈(x̂) =
1
2
[0,0,2,6x̂]⊺ and f̈(ŷ) =

1
2
[0,0,2,6ŷ]⊺ .
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The factors of ∆x and ∆y are introduced to account for the scaling. The interpolation of
attenuation is completely analogous; the matrix, U, of slowness control points merely is
replaced by an analogous matrix, say A, of attenuation control points.

In travel time tomography, the grids, uij and αij, are reconstructed from measure-
ments that depend upon uest and αest, a process that requires the sensitivity derivative
∂uest/∂uij and ∂αest/∂αij. These derivatives are zero for control points outside the 4×4
grid. For control points within the 4×4 grid, they can be determined by direct differenti-
ation of the interpolation formula

∂uest

∂uij
=

∂αest

∂αij
= f⊺(x̂)MP(ij)M⊺f(ŷ) , with P(ij) ≡ ∂U

∂uij
. (H.4)

The 4×4 matrix P(ij) is zero, except for its (i, j) element, which is unity; that is [P(ij)]pq =

δipδjq, where δij is the Kronecker delta function. Thus, the sensitivity derivative is just the
interpolant evaluated at (x̂, ŷ), but with U (or A) replaced with P(ij). However, as ∂uest/∂uij

and ∂αest/∂αij are 44 matrices, the interpolant must be evaluated sixteen times, once for
each combination of i and j. Furthermore, cases where U and A are at the edge of the
overall grid must be handled specially, because these matrices then contain fewer than 16
independent elements.

The sensitivity of the second derivatives, which are needed for amplitude tomogra-
phy, are computed in an analogous fashion:

∂

∂uij

(
∂ 2uest

∂x2

)
=

∂

∂αij

(
∂ 2αest

∂x2

)
= (∆x)2f̈⊺(x̂)MP(ij)M⊺f(ŷ)

∂

∂uij

(
∂ 2uest

∂y2

)
=

∂

∂αij

(
∂ 2αest

∂y2

)
= (∆y)2f⊺(x̂)MP(ij)M⊺f̈(ŷ)

∂

∂uij

(
∂ 2uest

∂x∂y

)
=

∂

∂αij

(
∂ 2αest

∂x∂y

)
= (∆x∆y)ḟ⊺(x̂)MP(ij)M⊺ḟ(ŷ)

(H.5)

Appendix I. Changes in amplitude due to conservation of energy

The energy flux, Fi, (rate of energy transport per unit area) of an elastic wave in the
direction, i, is (Synge, 1956-1957)

Fi =−τiju̇j . (I.1)

The flux conserves the local energy density, E, in the sense that Ė =−Fi, i.
Although our goal is to study the Rayleigh surface wave, we first consider a horizon-

tally propagating shear body wave, in order to provide a point of comparison. This shear
wave has displacement, u = [0,0,A]⊺ cos(ωx/b−ωt), where ω is angular frequency and
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b is shear velocity. The non-zero components of stress and velocity are

τxz = ρb2
(

∂uz

∂x
+

∂ux

z

)
=−ωρbAsin(ωx/b−ωt)

u̇z = ωAsin(ωx/b−ωt) ,
(I.2)

from whence the energy flux, Fx, and its time average, ⟨Fx⟩, are

Fx =−τxzu̇x = ω
2
ρbA2 sin2(ωx/b−ωt)

⟨Fx⟩=−τxzu̇x =
1
2

ω
2
ρbA2 .

(I.3)

The time-averaged flux is ⟨Fx⟩ = −τxzu̇x =
1
2ω2ρbA2. Unlike a surface wave, the shear

wave as a planar wavefront with no depth, z, dependence. Nevertheless, we are free to
consider the total flux over some depth interval, (0,L), as

⟨Fx⟩T =
∫ L

0
⟨Fx⟩ dz =

1
2

ω
2
ρbA2L . (I.4)

When the shear wave propagates from a medium with one shear velocity of a medium
with another, and neglecting reflections at the boundary, conservation of energy implies
that ⟨Fx⟩T is constant:

d⟨Fx⟩T = 0 =
1
2

ω
2
ρA2L db+

1
2

ω
2
ρbL ·2A dA , or,

dA
A

=−1
2

db
b

. (I.5)

Consequently, the amplitude decreases as the shear velocity increases, with a proportion-
ality factor of 1/2.

We now perform a similar calculation for the Rayleigh wave, restricting our analysis
to the case of a homogeneous halfspace with shear velocity, b, and compressional velocity,
a = rb, where r is a ratio. The calculation is more involved, because the way in which
the depth distribution of energy changes with velocity needs to be taken into account.
According to Aki and Richards (2009, Equation 5.56), the phase velocity of the Rayleigh
wave, Vr = 1/u, where the slowness, u, is given by the zero of the function, R(u):

R(u) =
(

1
b2 −2u2

)2

−4u2
ξ η , with ξ ≡

(
u2 − 1

a2

)1/2

and η =

(
u2 − 1

b2

)1/2

(I.6)

Note that we can rewrite this condition as f (z) = 0, with z = bu and

f (z) =
(

1
(bu)2 −2

)2

−4
(

1− 1
(bu)2

)1/2(
1− 1

r2(bu)2

)1/2

. (I.7)

The derivative, du/db, can be calculated using the implicit function theorem (e.g., Hilde-
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brand, 1962):

d f
du

=
d f
dz

dz
du

=
d f
dz

b and
d f
db

=
d f
dz

dz
db

=
d f
dz

u, so
du
db

=−d f
db

/
d f
du

=−u
b

(I.8)

Furthermore, the derivative of any function of the form, g(bu), is zero:

d
db

g(bu) = g′(bu)
[

u+b
du
db

]
= 0 (I.9)

Consequently,
d

db
(au) =

d
db

(bu) =
d

db

(
u
η

)
=

d
db

(
u
ξ

)
= 0 . (I.10)

The equation, R(u) = 0, can be solved numerically for u via Newton’s method, using the
analytic derivative:

dR
du

=−8p
(

1
b2 −2u2

)
−8uηξ −4u3

η
−1

ξ −4u3
ηξ

−1 (I.11)

This expression has been checked numerically, and gives Vr = γb with γ ≈ 0.92 (for
r = 1.8).

One of the consequences of Eqn. (I.10) is that the depth decay rates, say, ra = ωξ =

ωu(ξ/u) and rb = ηω = ωu(η/u) have derivatives ∂ ra/∂u = ω(ξ/u) and ∂ rb/∂u =

ω(η/u) that are positive constants. The depth decay rates increase with phase slowness
(and decreases with phase velocity). Consequently, as the shear velocity is decreased,
Rayleigh wave energy is squeezed towards the Earth’s surface.

According to Aki and Richards (2009, Equations 5.52 and 5.53), the displacement
of the Rayleigh wave is the sum of contributions from evanescent compressional and shear
waves:

P
[

au
iξ a

]
exp(−ωξ z)exp(iωux)+S

[
iηb
−bu

]
exp(−ωηz)exp(iωux) (I.12)

Here, ω is angular frequency and P and S are the amplitudes of the compressional and
shear evanescent waves, respectively. We now eliminate S from this equation. According
to Aki and Richards (2009, Equation 5.55 and 5.56), the conditions that the shear traction
and normal tractions be zero on the free surface at z = 0 imply:

−2iuabξ P = (1−2b2u2)S and (1−2b2u2)P = 2i
(

b3u
a

)
ηS (I.13)

Algebraic manipulation of the second equation yields an equation for ibηS:

ibηS =
1
2

( a
b2u

)
(1−2b2u2)P =

1
2

(a
u

)(
1/b2 −2u2) (I.14)
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Another algebraic manipulation of the second equation yields an equation for −buS:

−buS =
i
2

( a
b2

) (1−2b2u2)

η
P =

ia
2

(
1/b2 −2u2)

η
(I.15)

Hence, P and S in the displacement equation can be eliminated in favor of a single ampli-
tude, A: [

U1

U3

]
exp(iωux) = A

{[
uP

x
uP

z

]
ZP +

[
uS

x
uS

z

]
ZS

}
exp(iω px) , (I.16)

with

ZP = exp(−ωξ z) and ZS = exp(−ωηz)

uP
x = uPR

x = au and uS
x = uSR

x =
1
2

(a
u

)(
1/b2 −2u2)= 1

2
(au)

(
1

u2b2 −2
)

uP
z = iuPI

z = iξ a = i
(

ξ

u

)
au and uS

z = iuSI
z =

ia
2

(
1/b2 −2u2)

η
=

iau
2

(
1

u2b2 −2
)

u
η

.

(I.17)
These formulas have been checked numerically by verifying that they imply zero stress
on the free surface. Note that the derivatives, duP

x/db = duP
z /db = duS

x/db = duS
z /db =

0. Consequently, for an observer at z = 0, no distinction needs to me made between
A−1 dA/db, U−1

x dUx/db and U−1
z dUz/db; they are equal.

According to Synge (1956-1957), for a real displacement, the positive and negative
frequency components of an elastic wave are for from the complex conjugate pairs:

ui =Ui exp(−iωt)+Ui exp(+iωt) = 2UR
i cos(ωt)+2U I

i sin(ωt) (I.18)

Then, the time-averaged energy flux, ⟨F1⟩, of an elastic wave in the x-direction is

⟨F1⟩
−2ω

= ρa2 (UR
1,1U I

1 −U I
1,1UR

1
)

+ρb2 (UR
3,3U I

1 +UR
1,3U I

3 +UR
3,1U I

3 −U I
,3UR

1 −U I
1,3UR

3 −U I
3,1UR

3
)
.

(I.19)

Here, the superscripts R and I refer to real and imaginary parts. Now suppose

U1 = AuP
x ZP exp(iω px)+AuS

x ZS exp(iω px)

U3 = AuP
z ZP exp(iω px)+AuS

z ZS exp(iω px) .
(I.20)

Noting that

∂

∂x
exp(iωux) = iωuexp(iωux) and

∂

∂ z
ZP =−ωξ ZP and

∂

∂ z
ZS =−ωηZS , (I.21)
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and evaluating the functions at x = 0, we find:

U
1
∣∣x=0

= AuPR
x ZP +AuSR

x ZS (which is real)

U
3
∣∣x=0

= iAuPI
z ZP + iAuSI

z ZS (which is imaginary)

U
1,1
∣∣x=0

= iωuAuPR
x ZP + iωuAuSR

x ZS (which is imaginary)

U
3,1
∣∣x=0

=−ωuAuPI
z ZP −ωuAuSI

z ZS (which is real)

U
1,3
∣∣x=0

=−ωξ AuPR
x ZP −ωηAuSR

x ZS (which is real)

U
3,3
∣∣x=0

=−iωξ AuPI
z ZP − iωηAuSI

z ZS (which is imaginary)

(I.22)

These formulas have been checked numerically. The flux simplifies to

⟨Fx⟩ ≡ ⟨Fx⟩A + ⟨Fx⟩B , with (I.23)

⟨Fx⟩A =−2ωρa2 (−U I
1,1UR

1
)

= 2ω
2
ρa2A2u

[(
uPR

x
)2

Z2
P +
(

uSR
x

)2
Z2

S +2uPR
x uSR

x ZPZS

]
⟨Fx⟩B =−2ωρb2 (UR

1,3U I
3 +UR

3,1U I
3 −U I

3,3UR
1
)

= 2ω
2
ρb2A2

{
(ξ −η)uPR

x uSI
z ZPZS +(η −ξ )uPI

z uSR
x ZPZS

+ puPI
z uPI

z ZPZP +2uuPI
z uSI

z ZPZS + puSI
z uSI

z ZSZS

}
.

These formulas have been checked numerically. The vertically integrated horizontal
flux, ⟨Fx⟩T, is now defined in the limit, L → ∞. As only the Z’s are functions of z, we find:∫

∞

0
Z2

P dz =
∫

∞

0
exp(−2ωξ z) dz =

exp(−2ωξ z)
−2ωξ

∣∣∣∣∞
0
=

1
2ωξ∫

∞

0
Z2

S dz =
1

2ωη
and∫

∞

0
ZPZS dz =

1
ω(ξ +η)

(I.24)

Defining ⟨Fx⟩T ≡ ωρb2A2C and C ≡ (CA +CB), we find:

CA = (au)2

[
u
ξ
+

1
4

(
1

u2b2 −2
)2 u

η
+2
(

1
u2b2 −2

)
u

(ξ +η)

]

CB = (au)2
{(

1
u2b2 −2

)(
u
η

)
(ξ −η)

(ξ +η)
+

(
η −ξ

η +ξ

)(
1

u2b2 −2
)(

ξ

u

)
+

(
ξ

u

)
+2
(

1
u2b2 −2

)
u
η

ξ

(ξ +η)
+

1
4

(
1

u2b2 −2
)2( u

η

)3}
(I.25)
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These formulas have been checked numerically. By inspection, C, is a function of (bu),
only, so dC/db = 0. Numerical calculations indicate that C ≈ 9.0 (for r = 1.8). Conserva-
tion of energy implies

d⟨Fx⟩T = 0 = d(ωρb2A2C) = ρC(2A2b db+2b2A dA) or
dA
A

=−db
b

. (I.26)

This result differs from the shear wave case by a factor of two. Unlike the shear wave,
the depth distribution of energy in the Rayleigh wave changes with b, and influences the
sensitivity of amplitude to velocity changes.

Appendix J. Amplitude sensitivity due to conservation of energy

Equation (I.26) can be written in terms of the Rayleigh wave velocity, Vr = γb:

dA
dVr

=− A
Vr

(J.1)

We would not expect this formula to hold exactly in an Earth structure that is more compli-
cated than a halfspace, because the way in which changes in velocity redistribute energy
with depth are more complicated. In the layered-earth case, we expect dA/dVr =−ϕA/Vr,
where the factor, ϕ , needs to be determined by numerical simulation. In the common case
of a shallow, low-velocity layer atop a halfspace, we believe that at high-frequencies,
ϕ ≈ 1, because at those frequencies the Rayleigh wave energy is mostly within the very
top of the layer, which is effectively a halfspace. Similarly, a low-frequencies, most of the
Rayleigh wave energy is mostly within the lower halfspace, and again ϕ ≈ 1. At interme-
diate frequencies, the Rayleigh wave will behave more like a propagating wave confined
to layer, for which Eqn. (I.5) gives ϕ = 1/2.

Appendix K. Sensitivity kernel associated with energy conservation

The amplitude equation can be rewritten in terms of the Rayleigh wave slowness,
u =V−1

r , by noting that dVr/Vr =−du/u, yielding dA/A = ϕ du/u. The change in ampli-
tude, A, associated with energy conservation is then

δa(xi,yi)≡ δ

(
∆A(xi,yi)

A0

)
= ϕ

δu(xi,yi)

u0(xi,yi)
. (K.1)

Here, u0(xi,yi) is the reference Rayleigh wave phase velocity at horizontal position, (xi,yi).
Although purely local, Eqn. (K.1) can be converted to a sensitivity kernel by introducing
a Dirac function

δa(s) = ϕ

∫ s+ε

0

δ (s− s′)
u0(s)

δu ds′ . (K.2)

Here, ε ≪ s is a small positive number.
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Appendix L. Solution of the inverse problem

We use Riemann quadrature to approximate a ray integral as a sum. For example,
for travel time:

δ t(si) =
∫ si

0
δu(s′) ds′ ≈

Ni

∑
j=1

∆s ·δuest(sj) (L.1)

Here, sj = j ·∆s and the number, Ni of points along the ray path i has been chosen so that
∆s is smaller than the grid spacing. Inserting the sensitivity of the interpolated slowness
(Equation H.4) and reversing the order of summation yields

δ t(si) =
Ni

∑
j=1

∆s
M

∑
p=1

M

∑
q=1

∂δuest(sj)

∂upq
δupq =

Mx

∑
p=1

My

∑
q=1

(
Ni

∑
j=1

∆s
∂uest(sj)

∂upq

)
δupq . (L.2)

The sign of the right-hand-side of Eqn. (L.2) a positive, consistent with the well-known
behavior of a slowness increase leading to an increase in travel time. Sensitivity integrals
for the geometrical spreading, intrinsic attenuation and energy conservation contributions
to amplitude are handled similarly:

δa(si) =
Mx

∑
p=1

My

∑
q=1

(
Ni

∑
j=1

(−1
2
[s− s′]∆s)

∂

∂upq

(
∂ 2uest

∂ξ 2

))
δupq

+
Mx

∑
p=1

My

∑
q=1

(
ϕ

u0(si)

∂uest(si)

∂upq

)
δupq

+
Mx

∑
p=1

My

∑
q=1

(
Ni

∑
j=1

(−∆s)
∂αest(sj)

∂αpq

)
δαpq ,

(L.3)

with
∂

∂upq

(
∂ 2uest

∂ξ 2

)
= sin2

θ
∂

∂upq

(
∂ 2uest

∂x2

)
+2sinθ cosθ

∂

∂upq

(
∂ 2uest

∂x∂y

)
+ cos2

θ
∂

∂upq

(
∂ 2uest

∂y2

)
.

As is well-known, a positive perturbation in slowness causes rays to converge, leading to
a positive perturbation in amplitude. Such a slowness perturbation is associated with a
negative ∂ 2u/∂ξ 2, consistent with the minus sign in the first term of Equation (L.3). As
was discussed in Section 10, a positive perturbation in slowness leads to a positive pertur-
bation in amplitude, consistent with the positive sign in the second term of Equation (L.3).
As is well-known, a positive perturbation in attenuation factor leads to a negative pertur-
bation in amplitude, consistent with the negative sign in the third term of Equation (L.3).
Equations L.2 and (L.3) are linear algebraic equations relating observations of travel time
and amplitude to the unknowns control points, δuij and δαij. The unknowns can be ‘un-
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raveled’ into vectors, mu and mα , each of length Mx×My, and can be grouped into a single
model parameter vector, m = [mu,mα ]⊺ of length, M = 2Mx ×My. The data vectors, δ t
and δa, say of length, Nt and Na, respectively, can be grouped into a single data vector,
∆d = [δ t,δa]⊺ of length, N = Nt +Na.

Then, Equations (I.2) and (I.3) can be written as the N ×M matrix equation[
δ t
δa

]
=

[
Gt,u 0
Ga,u Ga,α

][
mu

mα

]
, or ∆d = G∆m . (L.4)

Here, the sub-matrices, Gt,u, Ga,u and Ga,α are unraveled versions of the ones defined
in Equations (L.2) and (L.3). Their sparseness can be estimated by examining a ray
that crosses the model in the x-direction. It interacts with a 4 × Mx swath of control
points, out of a total of MxMy. Thus, the fraction of non-zero elements on a row of is
4Mx/(MxMy) = 4/My. Rays with other orientations interact with a similar number of con-
trol points. Averaging the x and y-directions yields an overall estimate of 2/Mx + 2/My

non-zero elements. For a 1000× 1000 grid, the sub-matrices are estimated to be about
99.6 % sparse. The combined matrix, G, is even sparser, for it contains a block of zeroes.
In all our calculation, we assume ϕ = 1, the value for a Rayleigh wave in a halfspace.

The damped least squares solution used in the paper is (W. Menke, 2018)

mest = {G⊺G+W}−1 G⊺ {d−Gm0}+m0 . (L.5)

Here, m0 = [mu
0,m

α
0 ]

⊺ is a spatially-constant background solution and W is a diagonal
matrix of damping factors, with the upper half of the diagonal having a constant value, εu,
and the lower half, the constant value, εα . Small values of the damping constants have little
effect on well-resolved control points, but drive unresolved ones toward the background.
Large values of one of the damping constants, say εα , will force the solution to have most
of its spatial variability in u and not α (at the expense of fitting the data poorly).

The M × M Gram matrix, G⊺G, encountered in the damped least squares solu-
tion (Equation I.5) is typically very large. The examples in this paper, with M = 882,
were constructed by explicitly calculating the Gram matrix, and then solving the damped
least squares system with Python’s scipy.linalg.solve method. Additionally, we have
tested and found practical a sparse matrix implementation that uses the biconjugate gra-
dient method to solve Equation (I.5) without explicitly constructing the Gram matrix (see
W. Menke and J. Menke, 2016, Section 5.8).


