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Abstract 

We propose precise, physically absolute temperature profiling based on use of radiosonde GNSS 
carrier phase measurements. This contribution provides some theory development, especially on error 
propagation both in extracting tropospheric zenith total delays and in recovering water vapour and 
temperature profiles from these, using an on-board precise pressure sensor. It is shown that useful 
precisions can be achieved even with existing technology, which holds an interest especially for 
meteorological and climatological research use. 
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1. Introduction and concept 

Radiosondes are a long-established operational technique forming the backbone of 
the meteorological upper-air observational networks. The technique, and its error 
sources, are in general well understood, and it undoubtedly will remain an essential 
component offering in situ capabilities not otherwise available. 

However, it is also known (e.g. Sherwood et al., 2005), that measuring precise 
temperature on board a radiosonde can be a source of systematic error. Typically, the 
main purpose of these measurements has not been to provide precisely calibrated 
temperature values useful for, e.g., climatological studies. It would be useful though to 
have a technique that can do precisely that. 

Note that, where it is available in the area of study, tropospheric water vapour 
tomography (e.g. Champollion et al., 2005), while providing a three-dimensional 
picture of absolute atmospheric water vapour content, fails to give a similar spatial 
picture of either temperatures or relative humidity values. Specifically it cannot provide 
vertical profiles of these observables, like the technique proposed here does. 

Currently the positioning, i.e., location tagging, of radiosonde measurements is 
often done using GNSS receivers, having become affordable and small. The 
measurement technique is typically based on pseudo-random noise (PRN) code 
correlation, providing metre-level precision, good enough for routine meteorology use. 
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We propose an added-value technique for temperature profiling based on use of 
radiosonde GNSS carrier phase measurements, which, based on existing technologies, 
can be of millimetre-level uncertainty. This requires use of IGS (International GNSS 
Service) permanent reference stations (Dow et al., 2005), preferably a dedicated base 
station at a known position near the launch site, and processing of the GNSS 
observations in a relative mode. Precise positioning together with barometry on an 
uncertainty level of 1hP or better, will allow estimation of scale heights to an 
uncertainty of 0.1%, providing temperature estimates of uncertainty 10-3 × 300K = 0.3K. 
This uncertainty would apply to height interval of 1 km; for a full scale height of 7 km, 
uncertainty will be even better. For weather-related use, temperatures of ±0.2�1K at 
vertical resolutions of 500 m to 2.5 km would be interesting; for long term 
climatological modelling, uncertainty could be 0.1K, e.g., for the troposphere as a 
whole. 

The technique presupposes sufficiently good knowledge of the atmosphere's 
molar mass; for the dry constituents this is not a problem as these are well-mixed. For 
water vapour, however, we propose to use the same carrier phase observables together 
with those of the base station for estimating the total zenith propagation delay � 
containing a strong water vapour signature � above the current level of the sonde. 

From this, together with ambient air pressure, the total wet delay can be derived � 
and local average absolute humidity follows from its vertical gradient. As water vapour 
refractivity is some 17 times greater than that of dry air, values thus derived will be 
good enough for computing the average molecular mass at the sonde's location. 

Determination of temperature from scale height requires also gravity along the 
path of the sonde; this is not a limiting requirement, as the Earth's gravity field has been 
modelled to high resolution and low uncertainty. 

Inexpensive GNSS sensors are available capable of measuring carrier phases, e.g., 
the itrax03 from Fastrax (http://tinyurl.com/itrax03), which is already being used in 
Vaisala's radiosondes. 

2. Zenith total delay (ZTD) precision 

We know (S. Söderholm, personal comm.) that we can observe carrier phase at 
the double difference level to an uncertainty of �CP = ± 4 mm using an inexpensive GPS 
sensor. Simultaneously estimating from such observations the zenith total delay (ZTD), 
receiver vertical position and receiver clock offset will inevitably lead to a much greater 
uncertainty in each of these derived quantities. This problem was studied by (Vermeer, 
1997), concluding that for the vertical position co-ordinate estimate, substantial 
uncertainty growth occurs. 

We repeat here the analysis with a focus on the uncertainty (standard deviation) of 
the total tropospheric zenith delay unknown. 
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Fig. 1. Standard deviation of the vertical position co-ordinate Z and the tropospheric zenith delay ZTD, 
respectively. The values plotted correspond to a single pseudo-range observation precision of 1 and a 
number of visible satellites of 2�, and should thus be scaled for true precision and number of satellites. 

We start from the same observation equations, where the unknowns are numbered 
1�3 for the co-ordinates X,Y,Z (with Z pointing upward), 4 the receiver clock 
unknown, and 5 the tropospheric zenith delay unknown. With this, the corresponding 
elements in the design matrix become 

( )1 , sin sin ,a z A z A=  

( )2 , sin o ,  c sa z A z A=  

( )3 c s, o , a z A z=  (1) 

( )4   , 1,a z A =  

( ) ( )
1

5   , cos .a z A z
−

=  

Here, z and A are zenith angle and azimuth, respectively. 
As in the referred paper, we compute the elements of the normal matrix by 

integration over that part of the celestial sphere, �0, where satellites are visible: 

( ) ( ) ( )
0

, , ,ij i jn a z A a z A p z d
σ

σ= ��  (2) 

where i,j are the two distinct unknowns that we wish to estimate. Both subscripts are in 
the interval 1�5. 

For ( ) ,p z  the weight function, we consider two alternatives1 

                                                 
1 Note that both imply that the probability density for satellites is independent of azimuth. The 
assumption of azimuthal symmetry and the even distribution of satellites over a cap as a means of 
simplifying GPS error analysis can already be found in (Sjöberg, 1992), who also refers to (Beutler et al., 
1988) and (Geiger, 1987); something the author and reviewers of (Vermeer, 1997) were apparently 
unaware of. 



18 Martin Vermeer 

1. Uniform weighting: ( ) 1p z =  

2. Sine weighting: ( ) 2cos .p z z=  

we also assume that the integration cap �0 is the area above the zenith angle z0 for which 

0cos .z s=  Then we may write 

nij = ( ) ( ) ( )
0 2

0 0
, , sin

z

i ja z A a z A p z dA zdz
π

=� �  

 = ( ) ( ) ( )
1 2

0
, , ,i js

a t A a t A p t dAdt
π

� �  (3) 

where cos .t z=  
The integration over A using Eqs. (1) yields for the full 5 × 5 normal matrix: 

( )

( )
( )

1 2
2

1 2
21

2

1

1 2

1

1
2 .1

1

1

s

t

t
N p t dtt t

t t

t t

π

−

− −

� �−
� �
� �−
� �

= � �
� �
� �
� �� �

�  (4) 

For the case of uniform weighting ( ) 1p t =  we obtain 

1
1 1 3
2 6

1 1 3
2 6

1 13 2
3 2
1 2
2

1

2

ln

ln

  

s

t t

t t
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n

n

s s s

s s s

s s s

π

−

� �
� �
� �
� �= − − −
� �
� �− − −
� �

− − −� �

 (5) 

with 1 1 1 3
11 22 3 2 6

.n n s s= = − +  From this, we derive formulas for elements of the inverse 

matrix N-1 using the  maxima symbolic algebra package (Anon, 2008): 
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( )
( )( )

( )
( )( )
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 (7) 

For the case of  sine weighting, we similarly obtain, skipping intermediate steps 
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 (8) 

gain with 1 1 13 5
11 22 15 6 10

.n n s s= = − + For this case,  maxima gives us: 

( )
( )

1
533

1 180
;

2 1
N

sπ
− =

−
 (9) 

( )
( )

( )

4

1
555

9 11
.

2 1

s
N

sπ
− +

=
−

 (10) 

The derived functions, for observable 3 � vertical co-ordinate � and observable 5 
� tropospheric zenith delay � were plotted (after square rooting them to obtain standard 
deviations) in Figure 1. 

We see that using sine weighting leads to a clear deterioration of the vertical co-
ordinate estimates. This could be expected, but nevertheless sine weighting is to be 
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recommended as being a more realistic description of the true behaviour of 
measurement precision. Note that in all these computations, we assume the weighting 
function ( )p z  to represent true measurement precision. Based on experience however, 

this is a realistic assumption only for sine weighting. 
For the zenith total delays, we see that they have on the whole a considerably 

smaller standard deviation than than vertical co-ordinates, especially for low cut-off 
angles. This applies especially for uniform weighting, which appears even to go to zero 
for zero cut-off angle, which is undoubtedly not physical. Anyway, uniform weighting 
is not to be recommended. 

The choice of cut-off angle is a balancing act between the wish to recover 
tropospheric zenith delays of low uncertainty, requiring a well-conditioned observation 
geometry and thus a low cut-off angle, and the reality of a not precisely horizontally 
stratified troposphere (the assumption underlying the whole method) affecting the 
results less for horizontally less extended air volumes, i.e., higher cut-off angles. For a 
commonly used cut-off angle like 20º and sine weighting, we see a deterioration factor 
for zenith total delays of six times, i.e., 

CP6· .dσ σ≈  (11) 

For the above mentioned CPσ  this would mean for the standard deviation of the total 

tropospheric zenith delay: 24 mmdσ = ± . 

3. The refractivity of air 

We can express the microwave refractive index as (Rueger, 2002): 

( ) ( )2 2

6 31 2 4
CO CO2

1 ·10 ,M M

KK K K
N n p e p e e p

T T TT

′
= − = − − + + +  (12) 

where p and e are air pressure and water vapour partial pressure, respectively, in hPa, 

2COp  is carbon dioxide partial pressure, and T is temperature in Kelvin. Current best 

values quoted by Rueger are 1 1
1 2 377.6681 K hPa , 71.2952 KhPa ,K K K− −′ = = =  

2 1 1
4375463 K hPa and  133.4800 a . K hPK− −=  

Rueger believes dry refractivity (refractivity associated with dry air partial 
pressure, i.e., the 1K ′  and K4 terms together) computed with this formula to be good to 

±0.02% and wet refractivity (the K2 and K3 terms together) good to ±0.2%. The formula 
is intended for the 1 Hz to 1 GHz frequency range; the frequencies used by GPS lie 
slightly outside this range. 

Substituting the value 

( )
2

6
CO 380·10p p e−= −  (13) 

yields the specialized equation 
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( ) ( )6 31 2
2

1 ·10 ,M M

KK K
N n p e e e

T T T
= − = − + +  (14) 

where the dry refractivity coefficient is 

( ) 2CO
1 1 4 1 

p
K K K K

p e
′ ′= + − =

−
 

1 1 677.6681 K hPa 55.8119 K hPa ·380·1 0 − − −= + =  

1 77.6893 K hPa .−=  (15) 

The �good to 0.02%�, applied to this coefficient, means ±0.0155 K hPa-1, so the 
last stated digits are meaningless. A similar attribution for the wet refractivity 
coefficients cannot be made as readily, as there are two of them, K2 and K3. Attributing 
all uncertainty to the dominant K3 yields for the stated ±0.2% uncertainty: K3 = 375463 
± 751 K2hPa-1. 

Table 1. Concentrations of gases and their molecular masses, according to (Williams, 2008). Note that the 
percentage sum exceeds 100%, even though some rare species are not included here. 
*The CO2 concentration is in reality time dependent. 

Species Concentration (%) Molecular mass (g/mol) Contrib. 

N2 

O2 

Ar 

CO2 

Ne 

78.084 

20.946 

0.9340 

0.0380* 

0.001818 

28.0134 

31.9988 

39.948 

44.01 

20.2 

21.8740 

6.7024 

0.3731 

0.0167 

0.0004 

 100.003818 

100 

Total (Mdry) 

Adjusted to 100% 

28.9666 

28.9655 

 

4. The mean molecular mass of air 

The air's mean molecular mass is the weighted mean of that of dry air and that of 
water vapour, the masses being the partial pressures p � e and e. The formula for scale 
height is 

RT
S

Mg
=  (16) 

where M is the mean molar mass: 

2dry H O.
p e e

M M M
p p

−
= +  (17) 
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Table 1 (Williams, 2008) gives concentrations of gases and their molecular 
masses. 

For water vapour, we use 
2H O 18.0.M =  The concentration of CO2 is slowly 

increasing; 380 ppmv was around 2007. The effect of this on mean molecular mass is 
hard to calculate very precisely, as the amount of O2 removed depends somewhat on the 
mix of carbon and hydrogen in the organic substances whose oxydation is causing the 
increase. 

5. Zenith delay and pressure 

We may assume that the measured total zenith delay, in metric units, is the 
following integral: 

( ) ( ) 6
0 0 0

0 10 .
H

Md H d N dH− ′− = − �  (18) 

Substituting the expression (Eq. 14) for NM, we obtain 

( ) ( ) 6 31 2 1
0 0 20

  0 10 .
H KK K K

d H d p e dH
T T T

− � �−� �
′− = − + +� �� �� �� �

�  (19) 

This is an observation equation, where ( ) ( )0 0 0d H d−  is the observed quantity, and e 

and T are unknowns. 
If we assume that also the air pressure p is measured at known heights (GPS), we 

get additionally 

( ) ( )
( )

( )

0
 0

p H

p
p H p d p′− = =�  

0

H p
dH

S
′= −�  

0

H gp
M dH

RT
′= − =�  

( )2dry H O dry0

1
. 

H g
pM e M M dH

R T
� � ′= − + −� ��  (20) 

This is a second observation equation. 
Note that the function p (H) is considered directly measured. This means that the 

Eqs. (19, 20) could be directly solved stepwise from the ground up to obtain e (H) and  
T (H). 
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6. Error propagation analysis 

What interests us here is the error propagation behaviour when calculating e�(H) 
and T�(H) using Eqs. (19, 20). For this we have to linearize. We find for the linear 
dependencies: 

6 6
0 1 3 20 0

10 10  ,
H Hp e

d K dH K dH
T T

− −� � � �
′ ′∆ ≈ − ∆ − ∆� � � �

� � � �� �  (21) 

dry 0
  

Hg p
p M dH

R T
� �

′∆ ≈ − ∆ −� �
� ��  

2H O dry 0
,

Hg e
M M dH

R T
� �� � ′− − ∆ � �� � � ��  (22) 

where in the first we have retained only the dominant K1, K3 terms, and in the second 
considered g known � replaced by an average over the interval of integration. 

Executing the linearization now produces: 

6
0 1 2 0

0

1
 10 

H
d K p T dH

T
− ′∆ ≈ + ∆ −�  

6 0
3 2 30 0

0 0

21
10 ,

H He
K e dH T dH

T T
− � �

′ ′− ∆ − ∆� �
� �
� �  (23) 

dry 2 0
0

  
1 Hg

p M p T dH
R T

′∆ ≈ + ∆ −�  

2

0
H O dry 20 0

0 0

1
.

H Heg
M M e dH T dH

R T T

� �
� � ′ ′− − ∆ − ∆� �� �

� �
� �  (24) 

Here, e0, T0 etc. are the reference or approximate values used in the linearization. 
Now by the substitutions of integrated values 

0
 , 

H
e edH ′∆ = ∆�  (25) 

0
 , 

H
p T p TdH ′∆ = ∆�  (26) 

this becomes 

6 6 0
0 1 32 2 3 0

0 0 0

21 1
10 ,  10

He
d K p T K e T dH

T T T
− − � �

′∆ ≈ + ∆ − ∆ − ∆� �
� �

�  (27) 
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dry 2
0

  
1g

p M p T
R T

∆ ≈ + ∆ −  

2

0
H O dry 2 0

0 0

1
.

Heg
M M e T dH

R T T

� �
� � ′− − ∆ − ∆� �� �

� �
�  (28) 

Substitute numerical values into this: K1  = 77.6893 K hPa-1, K3 �=�375463 K2hPa-1, 
R = 8314 J K-1 kmol-1, g   = 9.8 m s-2, T0 = 288  K, e0  = 0. Then 

10 1 1 6 1
0 9.37·10 K hPa · 4.527·10 hPa · d p T e− − − − −∆ = + ∆ − ∆ =  

12 1 1 8 19.37·10 K Pa · 4.527·10 Pa · , p T e− − − − −= + ∆ − ∆  (29) 

7 1 1 5 14.12·10 K m · 4.49·10 m ·  .p p T e− − − − −∆ = + ∆ + ∆  (30) 

This is good enough for error propagation. 
We must use S.I. units m, s, K, and Pa throughout, necessitating the above unit 

conversion. 
Write this in matrix form: 

12 8
0

7 5

9.37·10 4.527·10
.

4.12·10 4.49·10

d p T

p e

− −

− −

� �∆ � � ∆� � + −
= � �� �� �∆ + + ∆� � � �� � � �

 (31) 

The inverse system is 

9 6
0

7 2

2.3542·10 2.3736·10

2.1602·10 4.9130·10

p T d

pe

� �∆ � � ∆+ + � �
=� � � � � �∆− +∆ � �� � � �� �

 (32) 

This equation can be used for propagation of variances. For typical values2 �d = ±�0.024�m 
and �p = ±�100�Pa we obtain in this way a variance matrix 

16 13

13 11

5.9534·10 1.7632·10
Var .

1.7632·10 2.7121·10

p T

e

� �∆ � �−
=� � � �� � −∆ � �� �

 (33) 

This yields 

82.44·10 K Pa  m ,
p T

σ
∆

= ±  (34) 

5207 8 Pa m.
e

σ
∆

= ±  (35) 

                                                 
2 Note that, as described by Eqs. (19, 20), these standard deviations refer to differences of tropospheric 
zenith delays and air pressures over a height interval. 
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The a posteriori correlation between the two unknowns amounts to �14% in this 
example case. 

7. Interpretation 

Note that in the previous section, the estimated quantities p�T and �e, as well as 
their mean errors, are actually integrated quantities, representing temperature deviation 
and the deviation of the partial pressure of water vapour integrated over a height 
interval. In the derivation, the height interval was taken as ��� ��, but it could be any 
height interval. For a small interval it is correct, as we have done, to move g outside the 
integral and replace it by its average over the height interval considered. 

Obviously the uncertainty of estimation of temperature and humidity will depend 
on the size of the height interval considered. For temperature estimation also the 
pressure p over the interval matters. 

Near ground level (1013 hPa = 101300 Pa), for a height interval of 1000 m, we 
will be able to estimate the mean temperature deviation with a standard deviation of 

 
·

 p T
T H p

σ
σ

∆
≈ =

∆
 

82.3736·10
K

1000·10 0
 

130
= ± ≈  

K 2.4 ,≈ ±  (36) 

and the mean partial pressure of water vapour with a standard deviation 

  e
e H

σ
σ ∆≈ =

∆
 

49402
Pa

1000
 = ≈  

0.5 . hPa≈ ±  (37) 

The uncertainty of the temperature estimate will grow with height due to the smaller 
pressure p to divide by. 

8. Error simulations 

Numerical experimentation (see Figs. 2, 3, 4) shows some interesting things 
concerning the behaviour of the standard deviation values for temperature and partial 
water vapour pressure depending on the assumed standard deviation of air pressure �p 
and that of the zenith total delay �d. It appears that temperature estimates depend 
critically on both pressure and ZTD measurement standard deviation in the range 
considered, while water vapour uncertainty depends only on the ZTD measurement 
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uncertainty for pressure measurements of uncertainty better than ±1 hPa. Only for 
pressure measurements of greater uncertainty, a dependency develops. 

As an example of the state of the art is Vaisala's BAROCAP® (Vaisala Oyj, 2008) 
it offers a resolution of 0.1 hPa, and a stated �reproducibility in sounding3� of 0.5 hPa 
for pressure levels of 1080 � 100 hPa, and 0.3 hPa for levels of 100 � 3 hPa. 

 

Fig. 2. Temperature precision �T  depending on assumed �p  and �d. 1 km layer, sea level pressure.  

 

Fig. 3. Water vapour precision �e  depending on assumed �p  and �d. 1 km layer, sea level pressure.  

9. Discussion and conclusions 

A temperature uncertainty of ±2 K may seem poor, but note the assumed height 
interval of 1000 m. Over 5000 m one would already obtain sub-Kelvin uncertainty, and 

                                                 
3 Defined as �standard deviation of differences, in twin soundings�. 
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this is a currently available, inexpensive technology. Also, a pressure sensor uncertainty 
of ±1 hPa is conservative. A good approach would be to divide the tropophere up in 
layers, compute the temperature value for each of them, and then aggregated values of 
lower uncertainty for the whole troposphere. 

9.1 Problems 

1. Inexpensive receivers as used in radiosondes provide only L1 frequency carrier 
phases. Ionosphere modelling, needed to be able to use single-frequency 
receivers on board the sonde, can be done using the global tracking network of 
the IGS (Dow et al. 2005) and ideally also the base station, which then should be 
dual frequency. Successfully eliminating the effect of ionospheric refraction 
from the estimates of tropospheric zenith delay requires careful analysis. 

2. Unless atmospheric conditions are stable, the hydrostatic equilibrium assumption 
needed for applying the above theory will not be valid. Measurements should 
thus not be undertaken, or not be relied upon, e.g, under conditions of front 
passage, high winds, or active convection. 

3. The sonde will be carried by air currents to horizontal locations away from the 
launch site. This may lead to a need to account for the horizontal gradient of air 
pressure. However, wind velocities typically are perpendicular to air pressure 
gradients, which should limit the size of this effect. On the other hand, in 
baroclinic regions, wind direction changes with height. 

4. Care should be taken to avoid multipath, by properly designing the antenna 
mount. One possibility is mounting both ground station and radiosonde antennas 
on the ends of long beams. Both antennas should be electrically identical, or the 
phase delay patterns of both carefully calibrated. The pendular motion of the 
payload after launch is another problem to be addressed. 

5. While the above theory tells that a low elevation cut-off is desirable, this has 
drawbacks: the temperature and water vapour profiles derived will then apply to 
a very large area around the trajectory of the sonde, where the assumption of a 
horizontally layered atmosphere becomes progressively less valid. 

9.2 Benefits 

Climatology: A major advantage of the technique is that it is directly based on the 
simple physics of the scale height, like also, e.g., GNSS limb sounding. The 
scale height of a gas in hydrostatic equilibrium is an absolute thermometer not 
needing calibration. GPS limb sounding, especially in the tropics where the 
atmosphere contains a lot of water vapour, cannot be used all the way down to 
sea level, and thus the proposed technique would be complementary if adopted 
worldwide. Long term climate monitoring is critically dependent upon the 
stability of the measurement processes being used. 
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Fig. 4. Correlation between temperature and partial water vapour pressure estimators; 1 km layer, sea 
level pressure.  

Meteorology: From the saturation water vapour pressure equation 

17.67
6.112exp hPa

243.5 C

t
e

t°
=

+
 (38) 

one can show by substitution (t = 0 � 40ºC) that an error of 1ºC in measuring 
temperature t produces a 7.5 � 5.5% error in partial water vapour pressure for a 
given relative humidity. This represents a lot of latent heat, especially in the 
tropics. The proposed method circumvents the problem by deriving the 
temperatures from the water vapour. Note that the situation for absolute 
measurement of water vapour profiles by radiosonde has not been any better 
really than that for temperatures, see, e.g., (Szczodrak et al., 2005). More precise 
profiles (of actual water vapour content) might help produce better 
understanding, and better predictions, in the long run. Radiosondes are a 
technique that can be used to calibrate and validate other techniques. 
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