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Abstract 

A simulation based study on the remote sensing problem of retrieving the atmospheric ozone 
profile is performed so that the effects of the discretization error can be analyzed. 

The retrieved profile is recovered by using the stochastic inverse theory in a finite dimensional 
case. Provided the a priori information is given, the method gives as a solution a probability density 
function having the most probable ozone profile as mean value. 

The goal of this paper is to show that it is possible to choose the a priori probability distribution 
so that the retrieved profile does not depend on the density of the discretization. 

Numerical simulations show that the estimated ozone profile converges pointwisely when the 
discretization is densified i.e. the retrieved profile remains almost constant when increasing the number 
of the points in the discretization set. 

Key words: Microwave sounding of ozone, convergence results, stochastic processes, 
a priori information 

1. Introduction 

During the past decade many ground based microwave radiometres have been 
constructed to monitor the atmospheric ozone profile. These radiometres measure the 
atmospheric brightness temperature (ABT) from which the ozone profile is retrieved. 
There already exist many papers about the retrieval theory and many different retrieval 
methods have been applied to these kind of problems (Rodgers, 1976 and Twomey, 
1965). 

It is known (Randegger, 1980) that the ABT equation leads to a Fredholm 
integral equation of the first kind for the ozone profile. Moreover it is known that the 
discretized inverse problem is ill-posed i.e. the solution is not stable with respect to the 
measurement error. 

There exist many methods for solving ill-posed inverse problems, in this paper we 
use a non iterative method, the statistical inverse method. This method has been already 
applied to this problem with good results by Rodgers (Rodgers, 1976). The aim of this 
paper is  to  show  that  with  this  method  it  is  possible  to get a solution that does not  
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depend on the density of the discretization. We claim that by choosing the a priori 
distribution in the appropriate way we do not need to densify the discretization in order 
to obtain a more precise solution. This is of course important in terms of computing 
times. 

The use of the a priori information is required since the ill-posedness of the 
problem. The a priori information is usually based on various quantitative and 
qualitative features of the true profile. A priori statements are made for values of the 
unknown profile at a specified set of points called a discretization set. This 
discretization set is relevant since the profile is estimated only at these points. 

Since a priori information comes from observations of the true profile, it could be 
stated for the whole profile rather than a part of it like values at some specified 
discretization set. Moreover, the meaning of the a priori assumptions should become 
clearer when stated for the whole profile. We formulate the a priori information in such 
a way that it applies to any equally spaced discretization set of the unknow profile. 
Hence, with one measurement vector we are able to obtain solutions with various 
discretizations that can be compared. 

In the beginning of this paper, the direct theory of the atmospheric radiation 
transfer is presented for a better understanding of those who are not so familiar with 
this problem. A brief explanation of the inversion method is also presented and a 
particular attention is obviously given to the construction of the a priori covariance 
matrix. Numerical simulations are presented to show that the solution does not depend 
on the density of the discretization. The claim is also supported by the comparation of 
the variances obtained by using different amounts of point in the discretization set. 

2. Direct theory 

In this section we describe the integral equation relating the measurements and 
the density of ozone. We assume that a microwave radiometer measures the intensity of 
downwelling radiations in the direction of the zenith. Moreover, this radiometer 
operates at the center frequence of 110.836 GHz with a 1200 MHz bandwidth and a 20 
MHz resolution in addition to a 50 MHz bandwidth and a 85 kHz resolution. 

At the frequency of 110.836 GHz there is a rotational transition in the spectrum of 
an ozone molecule. The spectrum broadens as a function of the pressure in the 
atmosphere due to collisions between molecules. Below the altitude of 75 km this 
broadening can be modelled by the Van Vleck-Weisskopf spectral line shape function 
(Van Vleck and Weisskopf, 1946) 
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where z is the altitude, υ is the frequency, υ0 is the center frequency 110.836 Ghz and 
the Lorentz half-width parameter in 1/cm is 
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where p is the pressure, T is the temperature and Ts=300 K. 
The line shape function multiplied by the transition intensity S(z) defines the 

length absorption coefficent (Kroto, 1975 and Rosenkranz, 1993) 
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Here the line strength function, calculated by using a reference value STref, is 
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where k is the Boltzmann constant, Tref = 300 K is the reference temperature, 
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is the rotational partition function and 
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is the vibrational partition function, where h is Planck's constant. The spectrometric 
parameters are given in Table 1. 

Table 1. Molecular quantities of 16O3. 

Molecular parameter Value Reference 

Figure of symmetry Σ 

Rotational constant A 

Rotational constant B 

Rotational constant C 
1. vibration frequency ω1 

2. vibration frequency ω2 

3. vibration frequency ω3 

Lower energy level El 

Line intensity (300 K) STref 

Air-broadened halfwidth γair 

Coeff. of temp. dependence n 

2 

106 536.24 MHz 

13 349.26 MHz 

11 834.36 MHz 
716 cm-1 

1.l089 cm-1 

1 135 cm-1 

17.5973 cm-1 

1.188E-23 cm-1/(molec cm-2) 

0.0812 cm-1/atm at 300 K 

0.76 

(Gora, 1959) 

(Depannemaecker et al., 1977) 

(Depannemaecker et al., 1977) 

(Depannemaecker et al., 1977) 

(Rachavachari et al., 1989) 

(Rachavachari et al., 1989) 

(Rachavachari et al., 1989) 

(Rothman, 1992) 

(Rothman et al. 1998) 

(Rothman et al. 1998) 

(Rothman et al. 1998) 
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The intensity of radiation as seen on the ground obeys the radiative transfer 
equation (Randegger, 1980) 
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where the intensity TB is expressed by the Rayleigh-Jeans law in terms of the equivalent 
black body brightness temperature. In equation (7) ρ is the density of ozone as a 
function of the altitude z, H is the maximum altitude, exp [-τ(0, z)] corresponds to the 
ozone absorption below z, exp [-β(υ)] represents the attenuation in troposphere due to 
water vapour and Tatm is the intensity of radiation emitted by sources other than ozone. 
The local thermodynamic equilibrium approximation is assumed to be valid. 

In the term exp [-τ(0, z)] the unknown ozone density is replaced with a standard 
ozone profile from AFGL atmospheric models (Anderson et al., 1986). The 
linearization is plausible since the term differs only slightly from unity (Brillet, 1989). 

After estimating the tropospheric term exp [-β(υ)] and the linear term Tatm 
(Brillet, 1989) the equation for the brightness temperature reduces to 
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where the integral kernel is 
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In equation (8) the brightness temperature TB is corrected for tropospheric attenuation 
and emission due to other sources. 

3. Discretization independent retrieval 

By discretizing the integral equation (8) we obtain a matrix equation Y = AX+εd 
that relates the M-dimensional measurement vector Y with the N-dimensional ozone 
density vector X and discretization error εd. When the experimental noise εm is 
included, we obtain a matrix equation Ym = AX + εm + εd. 

The number N is taken so large that the discretization error εd is much smaller 
than the measurement error. Therefore, densifying the discretization set would not have 
any noticable effect on the overall noise ε = εd + εm. 

We estimate the density of the ozone X from the measured values of Ym by 
applying the stochastic inverse theory (Lehtinen, 1988). It states that all available 
characteristics of the vector X on the basis of one measured value y of Ym and a a priori 
probability density function (p.d.f) DX

pr (x) are contained in a a posteriori p.d.f. 
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From the a posteriori p.d.f. suitable estimates and errorbounds for X can be 
extracted. 

When the noise ε is gaussian with zero mean and a covariance matrix Σε and the a 
priori p.d.f. is gaussian with zero mean and a covariance matrix Σpr, then the a 
posteriori p.d.f. is gaussian with a covariance matrix 

( )Σ Σ Σpost
T

prA A= +− − −
ε

1 1 1
 (11) 

and mean 

x A ypost
T= −Σ Σ ε

1 .  (12) 

This method is already used in atmospheric retrieval problems (Rogers, 1976). We will 
apply the method with a special choice of the a priori p.d.f. 

The method is stable with respect to the noise. Considering this, it would seem 
unlikely that the estimated profile should greatly change when the discretization is 
densified. On the other hand, the size of the unknown vector X would grow and bring 
more points to the estimated profile. Our conjecture (which we investigate later 
numerically) is that with right a priori information the estimated profile converges in 
common points when the discretization set is densified. Moreover, we claim that even 
the a posteriori p.d.f. restricted to the common points do not change when the 
discretization is densified. This is later numerically verified by studying both 
covariance matrices and mean values. 

The crucial point is the choice of a priori. The a priori should be extendable to 
the whole atmosphere and it should hold necessary and trueful characteristics of the 
ozone density. 

3.1 Construction of the a priori p.d.f. 

From the long term behaviour of ozone density (Anderson et al., 1986) we deduce 
that our solution has to satisfy next conditions: 

  The value of the ozone density on the ground is near zero. 
  Between 0 and t0=40 km the solution is smooth. 
  Above t0 the smoothness grows. 
  The solution is zero at the altitude of T=120 km. 
  The solution decreases exponentially above t0. 
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Denote with Z Z Zn n
n
n( ) ( ) ( )( ,...,= 0 ) the a priori random vector which corresponds to 

the a priori ozone density on a given discretization set (0 = s0,..., sn = 120 km). We 
denote the separation sj - sj-1 with hn. 

Condition 1. fulfills when Z n
0
( )  is a Gaussian random variable with zero mean and 

variance 1 (when the ozone density is given in 1018 molec/m3). 
For Condition 2. we form an n-dimensional Gaussian random vector η(n) with 

zero mean and covariance matrix a hn ij
2 1⋅ ⋅− δ . The idea is that η(n) has very irregular 

dependencies between its components. The irregularity is scaled by the factor a which 
will be later related to the classical regularization parameter. 

The irregular dependencies are smoothened with integrations of various orders. 
For Condition 2. we integrate once. Hence we obtain a random vector X(n) which is a 
discrete  integral of the random vector η(n) 
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The random vector X(n) has X n
0
( )  = 0 contradicting Condition 1. We overcome the 

difficulty by choosing such l that a2 · hn · l ≈ 1 and repeating above calculations with an 
n + l dimensional vector η. Then the vector U Xj

n
l j
n( ) ( )= +  has as its first component a 

Gaussian random variable with zero mean and variance approximately 1. The vector 
Uj

n( ) , where jhn ≤ 40 km, represents the ozone profile from ground to the altitude of 

40 km. 
For Condition 3. we integrate twice an n-dimensional vector ξ independent of η 

with zero mean and covariance matrix b hn ij
2 1⋅ ⋅− δ . We obtain a random vector Y(n) 
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where h n T tn ⋅ = −0 0 . For Condition 5. we modulate the process Y(n) by multiplying the 
discrete noise ξ(n) with the function f 
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n

n i i
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where f(t) = exp (-t/s). The parameter s is chosen appropriately. This has covariance 
matrix 
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Now we can form a priori random vector 
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Let us briefly explain what this a priori means for the whole ozone density. By 
studying covariance matrices CZ

n( )  of vectors Z(n) one can show that, when n grows, the 
components of Z(n) at fixed grid points converge to random variables which are the 
values of the stochastic process 
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calculated at the same fixed grid points. In the equation (14) Bt is a Brownian motion 
and K Y Yt t t t

t t
T t T t− −

−
− −= −

0 0

0

0 0
, where Yt is a solution to the stochastic differential equation 

dV b f t dD
dY V dt

t t

t t

= ⋅
=

⎧
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where Dt is a Brownian motion independent of Bt. This process has almost surely 
continuous sample paths and it almost surely has a continuously differentiable sample 
paths above t0. Moreover, its value on the ground is a random variable B1 with zero 
mean and variance 1 and it vanishes above T. Equation (15) indicates that between t0 
and T the process Zt decreases exponentially. 

It is interesting to compare this a priori information with classical regularization 
methods. Let the covariance of the noise be Σε = α · I and the a priori covariance matrix 
be ΣX = CZ

N( ) . Then we obtain an estimate 

x C A A A yZ
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We decompose the inverse of the a priori covariance matrix ( )CZ
N( ) −1

 to a product BT B 

where B is the N × N matrix 
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The matrix B changes at the (k + 1)th row. The terms hn  and hn
3  in the matrix 

originate from different orders of integration. It is well known that (16) is now also the 
solution to the Twomey-Tikhonov regularization problem (Rodgers, 1976 ) 
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|| || || || inf ||( || | || )Ax y Bx
x

Ax y Bx− + = − +2 2 2 2α α  

Hence our a priori gives the Twomey-Tikhonov method in this special case and even 
an interpretation for the determination of the regularization parameter. 

We have two undetermined scaling factors a and b that, once chosen, apply to any 
discretization set. For example, when studying values below t0, we notice that in the 

Twomey-Tikhonov method the regularization parameter is α
a hn

2 , where α is the 

measurement error, hn is the discretization step and a is the parameter influencing the 
magnitude of the a priori irregularity. 

In the following, we demonstrate numerically that a priori covariance matrix CZ
n( )  

has a correct dependence from hn enabeling the discretization independent retrieval. 

4. Numerical results 

In the following, we present results from four simulations based on the theory 
presented above. As simulated measuraments we calculate the ABT by using the AFGL 
sub-artic ozone profile in the summer (Anderson et al., 1986 ). In the simulation we add 
a random noise that has standard deviation equal to 2 percent of the maximum of the 
profile. 

Each of these four simulations is performed using a grid doubly as dense as the 
previous one. In Figure 1 it is shown that already with the first three different grids we 
recover the same solution. 

Because the solution vectors have different sizes, the comparision of the results is 
done at the common points of the three grids. In Table 2 the differences of each two 
successive solutions is shown. To calculate the comparation scalar we use the 
following: 
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where x j
i  is the I : th retrieval profile calculated in the points that are in common with 

x j
i−1 . This shows that the solution does not change almost at all when the grid is made 

denser. 

Table 2. Differences between different solutions divided by the number of common points. 

Between 47 points and 93 points 1.070E-04 

Between 93 points and 185 points 1.090e-05 

Between 185 points and 369 points 2.412e-06 
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Fig. 1. Inverse profile of the ozone in sub-artic summer with three different grids. 

In Figure 2 it is shown that also the differences between the standard deviations 
of each two successive grids depict this feature. Moreover we have compared the 
covariance matrices of successive grids; also in that case the difference between any 
two successive grids become smaller as the grid is made denser. Simulations made with 
much denser grids show that the solution is convergent but that the profile is already so 
near to the limit profile with the used grid that it does not justify the use of any denser 
grid. 

5. Conclusions 

Inverse problems related to natural phenomena, like the one considered in this 
paper, are usually ill-posed. Stable solutions are recovered by applying some kind of 
regularization. Simulations show that taking the regularization errors in Twomey-
Tikhonov regularization as functions of the distance between neighboring points (hn) 
leads to a solution that does not depend on the density of the discretization set. This is a 
significant result when we think in terms of computing times and becomes really 
important when the model is described by large matrices. 
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Fig. 2. Differences between the standard deviations of each two successive grids. 

The method we used is called stochastic inversion and it gives the most probable 
ozone profile with error estimates. The a priori information is chosen so that also the 
error estimates remain constant when the discretization changes. We have numerically 
verified that with the right a priori information the mean value and the covariance 
matrix of the a posteriori p.d.f. converge when the discretization is densified. The 
discretization has clearly to be at least dense enough to give a solution that is near to the 
limit solution. On the other hand, our simulations have shown that one has no reason to 
use a denser grid since the profile remains approximatively the same. 

We used the stochastic inverse theory in a finite dimensional case to obtain the 
estimated solutions but made our a priori assumptions extendable to a continuous 
stochastic process. On the contary, the commonly used a priori p.d.f. with diagonal 
covariance matrix does not extend well to the whole atmosphere. The extended version 
should have only uncorrelated points, a behavior similar to white noise which is not 
exactly a stochastic process but a generalized stochastic process. 

The true ozone density is intended to fall in the class consisting of sample paths 
of the stochastic process. If the ozone density should behave differently, the a priori 
stochastic process should be accordingly modified. This concerns mainly Condition 5. 
of the exponential decay. 
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When we used only modified Brownian motion as a priori we ended up with an 
oscillating tail. We concluded that the Brownian motion does not restrict the estimated 
solution enough, hence arriving at our more constrained a priori. 

Finally, the results are a bit more general than what is presented here. Based on 
our preminarily analysis there seems to be no objection in using the same technique in 
two dimensional case. 
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