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Abstract 

In this paper an attempt is made to summarize the results of recent field experiments (Leikin and 
Rozenberg, 1984, Tang and Shemdin, 1983, Birch and Ewing, 1986, Hansen et al., 1990, Banner et al., 
1989, Banner, 1990, and some others) with the purpose to demonstrate that the rapid spectral cut off, 
needed for determination of the boundaries of the dissipation subrange in the wave number frequency 
range, seems to be an intrinsic property of well-developed seas. 

It is shown that in the dissipation subrange the spectrum most likely has the form S(ω)=βg2ω-5, 
where β=0,025, g is acceleration due to gravity, and energy dissipation restricted to a range of 
frequencies ω>ωg, much higher than frequencies of dominant waves, or frequencies where weak 
nonlinear interactions can produce direct energy cascade (Kitaigorodskii, 1983, Zakharoff, 1992). The 
characteristics of the transition from rear high-frequency and high-wave number parts of wave spectra 
to the dissipation subrange are summarized. 

In this paper, which has much in common with the authors previous publications (S.A. 
Kitaigorodskii 1992 a, b), there are a few new, but important elements. First of all, in data analyses a 
distinction has been made between space and time average statistical characteristics of the wind-wave 
field. Than, in analysis of spatial characteristics new experimental data have been added. Among them, 
the Lupyan and Sharkov (1989) data on two-dimensional spatial wind-wave spectra in the Caspian Sea 
at large fetches, and results of Jahne and Riemer's (1990) laboratory studies of spatial wind-wave 
spectra measured by optical methods. According to the Lupyan and Sharkov (1989) spectra, the 
transitional (to the dissipation subrange) wave number kg has been found to be equal to 1,8-2,0 m-1 
(against the SWOP (Stereo Wave Observation Project) value kg=0,2 m-1), i.e., for wavelengths of the 
order of several meters. On the other hand, the nondimensional frequencies ωgUa / g, corresponding to 
the spatial Lupyan - Sharkov spectra, have been found to lie in the range 2,65-2,80, which is very close 
to the value of ωgUa/ g in SWOP, equal to 2,5-3,7. The Lupyan - Sharkov data are not in contradiction 
with a tendency of ωgUa / g to diminish with fetch. Such behaviour of ωgUa / g has been clearly 
established in this paper due to the Jahne and Riemer laboratory data (1990), where the transitional 
wave number kg and frequency ωg have been determined for poorly studied and little known small fetches 
(for gX/ Ua

2 =3,0-11,0 the values of ωgUa / g were around 50, and it was for such wave numbers kg as 
160 m-1). By using the Jahne and Riemer data, we have extended the previously found relationship 
between ωgUa / g and ωpUa / g, ωp - peak frequencies, to fairly large values of ωgUa / g (see Fig. 1). 
Moreover, in this work attention has been given to the description of the relation between the boundaries 
of the dissipation subrange, derived from standard spectral characteristics of wind waves, and the inner 
scale in the fractal description of the developed sea surface. This has been done using the recently 
published results of Zakharoff (1992), who has been made an attempt to determine conditions of the sea 
surface fractalization due to surface tension effects. 
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Introduction 

Since the 1981 symposium on wave dynamics and radio probing of the ocean 
surface in Miami many interesting publications about the equilibrium spectra of wind 
waves appeared in oceanographic literature. Beginning with the work's of 
Kitaigorodskii (1983) and Phillips (1985), a great deal of attention was devoted to the 
explanation of the wind speed dependence of the rear face of the spectra of surface 
gravity waves. This has been done either by using concepts of statistical equilibrium of 
the Kolmogoroff's type in weakly nonlinear surface gravity wave field (Kitaigorodskii, 
1983, Zakharoff and Zaslavskii, 1982), or by use of alternative model based on the 
balance of source terms (Phillips, 1985, Komen et al., 1984). The forms of the 
equilibrium spectra in these two models are not too different from each other 
(Kitaigorodskii, 1987), which make it difficult to distinguish between the types of 
statistical equilibrium only on the basis of the information about the rear faces of the 
frequency and wave number spectra. This becomes even more evident, after work by 
Banner (1990), who has devoted special attention to the probably underestimated 
before the important role of k-dependent type of angular distribution of wave energy 
propagation in shaping rear faces of frequency wave spectra not far from its peak. This 
viewpoint was just briefly mentioned in Kitaigorodskii et al. (1975) (see footnotes on p, 
114 in this paper), whereas Banner (1990) has been trying to establish empirically the 
canonical form of wave spectra in the whole energy containing region of the two-
dimensional wave spectra ψs (k) = ψs (k, θ), (k = (k cos θ, k sin θ). 

Contrary to asymptotic arguments of statistical equilibrium in weakly nonlinear 
field of surface gravity waves, which leads to wind dependence of ψs (k, 0) through the 
dependence of energy and action fluxes from wind speed (Kitaigorodskii, 1983, 1987), 
Banner (1990) formulated 2-D wave number spectral model using empirical form of 
directional frequency spectra of Donelan et al., (1985), with extrapolation of their ω < 3 
ωp form, to much higher wave numbers. Banner (1990) argues k-4 form of the rear side 
of the ψ (k, ϑ) above the peak enhancement region is in agreement with latest 
observations, and that the broad directional distribution (independent of k/kp values, kp - 
peak wave number) occurs approximately only at k/kp > 10, For smaller k/kp Banner's 
(1990) model demonstrates that the prescribed spreading function according to Donelan 
et al., (1985), can easily explain two observed features in frequency spectra of ocean 
gravity waves, i.e. wind dependence in the region close to the peak (ω/ωp ≤ 3), and 
transition from ω-4 to ω-5 form, at frequencies which noticeably varies with ωp (!). 
Banner (1990) shows that intrinsic frequency spectrum transitions from ω-4 to ω-5 form 
around 6-10 kp. Contrary to Banner (1990) conclusions, Kitaigorodskii (1983) idea has 
received some support in the paper by Hansen et al. (1990), where transition to ω-5 form 
in the frequency spectra was found to be consistent with transition to k-4 form in high 
wave number region of spatial spectra ψ (k). The transition from wind dependent k-7/2 
form of spatial spectrum ψ (k) to k-4 form, which according to Kitaigorodskii (1983) 
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indicates the dissipation subrange, appears in the data of SWOP experiments (cf. 
recalculations of SWOP data in Kitaigorodskii (1984). To my knowledge this was long 
time the only direct evidence of occurrence of the more rapid (then k-7/2) spectral fall off 
in high wave number tail of wave number spectra. Of course, the data which contains ψ 
(k, ϑ) spectra, satisfying k-4 form, are much more numerous (Phillips, 1977). The latest 
among them seems to be Banner et al. (1989) recent stereophoto measurements of k-4 
form in the range of short wavelengths 0,2-1,6 m, which we’ll analyze later. The very 
question about the existence of the dissipation subrange is far from being only of 
academic interest: the radar backscattering wind dependence and wave number 
dependence can be explained only by knowing the behavior of high frequency and high 
wave number tails of the spectrum. Indeed the dissipation subrange according to radar 
returns must be observed (or exist) at wave numbers much higher than those which were 
originally found by Phillips in 1958 (Phillips, 1958) and Phillips (1977). For example 
the data analyzed recently by Wu (1990) in respect to the variations of the radar return 
with surface wave number, seems to locate the dissipation subrange in the range 12 cm 
> λ > 1,25 cm. This appears to be a rather extreme conclusion: for example, the results 
of recent stereophotography indicating a k-4 form with broad angular distribution in the 
range of wave lengths 20-150 cm (Banner et al., 1989) can be considered also as an 
evidence of the existence of the dissipation subrange. Wu (1990) analysis seems to be 
rather in accord with Phillips (1985) assertion that the equilibrium range prevails for 
gravity wave components, where dissipation subrange exist only for shortest gravity and 
gravity-capillary wave components. Note also that in situ measurements used by 
Kitaigorodskii (1983) and Phillips (1985) were limited to components no shorter than 
say 1-1,5 m. Thus according to these authors, as well as Banner et al. (1989), it seems 
that the typical value of upper bound of dissipation subrange is 1-1,5 meter (!). However 
it must not be forgotten also that according to Kitaigorodskii (1983) and Hansen et al. 
(1990) analyses the typical transitional wave number kg and frequency ωg for the 
“beginning” of dissipation subrange in wave spectra depend both on wind speed and the 
stage of development (decrease of kg and ωg with wind speed, as well as with fetch or 
duration (cf Fig. 5 in Hansen et al. (1990)). Thus we can expect that for young waves 
and not high wind speeds the dissipation “subrange” is moving to the "microscales" of 
shortest gravity ripples and capillary gravity waves, where for moderate and strong 
winds and rather well developed waves, dissipation “subrange” can be observed in more 
wide ranges of wave numbers and frequencies higher than the peak values, but lower 
than the scales of gravity capillary ripples. Still the available information about 
transitional frequency ωg according to Kitaigorodskii (1983), Hansen et al. (1990), 
doesn't show a big variation in ωg, whose typical value looks close to 4 g / Ua (Ua - wind 
speed). The very fact that the dissipation subrange (in wave number space) is 
characterized by power exponent 4, give rise to the attempts to characterize the surface 
geometry in equilibrium range (with smaller power exponents, where both direct energy 
cascade and wind input can occur) by the use of fractal dimensions which in such case 
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becomes both relevant and useful (Glazman, 1988). It is interesting that the rapid 
spectral fall off needed for determination of the boundary of dissipation subrange seems 
to be an intrinsic property of relatively well developed sea. So according to fractal 
description of the sea surface the surface microscale h ≈ 1 m (Kolmogoroff's microscale) 
is in good agreement with the values of transitional wave number kg and frequency ωg 
which appear indirectly in the Phillips (1985) and Banner et al. (1989) papers. Their 
results we'll reanalyze, but it seems from above said that it is instructive to establish the 
correspondence between Kitaigorodskii (1983) “transitional” scales and fractal model of 
the sea with its inner microscale h. We'll discuss this topic later on, as well as the 
assumption about the separation of the region of energy input from wind and dissipation 
due to wave breaking in the high-frequency, high wave number parts of wave spectra. 

1. Statistical equilibrium, saturation, and dissipation subrange in wind wave 
spectra 

1.1. Spectral characteristics of wind wave field 

The rather complete description of the commonly used spectral characteristics of 
wave field, which are either measurable or calculable can be found in the papers of 
Kitaigorodskii (1987) and Banner (1990). Both contain a good account of the spectral 
description of random wind wave field. We briefly repeat here what in this respect will 
be needed for further discussions. 

The Fourier series representation of the surface ζ (x, t). 

ζ (x, t) = (∫∫ exp {i (k x - ωt) dZζ (k ω) = ∫ dk ∫ dωζkω exp {i (k x - ωt)} (1) 

{k = (k1, k2) = (k cos ϑ, k sin ϑ) is wave number vector, ω is frequency} is often used 
in the description of random wave field (in this case dZζ (k, ω) is Fourier-Stilties 
amplitude). 

The symmetrical wave spectrum Es (k, ω) defined as 

Es (k, ω) = Es (-k, -ω) = < ζ kω ζ kω* > (2) 

is the Fourier transform of the covariance B (r, τ) 

Es (k, ω) = (2π)-3 ∫ dr ∫ dτ B (r, τ) exp {-i (kr - ωτ)} (3) 

with normalization condition 

<ζz> = B (0, 0) = ∫ dk ∫ dω Es (k, ω) (4) 

and 

B (r, τ) = B (x + r, τ, x, t) (5) 
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The reduced symmetrical (measurable) wave number spectra ψs (k) and frequency 
spectra S(ω) can be obtained by integration over ω and over k 

ψs (k) = ∫ dω Es (k, ω) (6) 

Ss (ω) = ∫ dk Es (k, ω) (7) 

ψs (k) arises from frozen spatial image analyses and does not contain actual wave 
propagation information partitioning the wave energy equally to components 180° 
apart. 
Note, (Kitaigorodskii, 1986) that 

ψs (k) = 1/2 [F (k) + F (-k)] (8) 

where the directional wave number spectrum F(k) is defined as 

1/2 F (-k) δ (k - k’) = <ηk
- (ηk

-) *> (10) 

where in (1) 

ζkω = ηk
+ δ (ω - δ) + ηk

- δ (ω + δ) (11) 

and random coefficients ηk
+, ηk

- are the amplitudes of free linear surface gravity waves 
propagating in the positive and negative direction of the vector k, and satisfies the 
dispersion relationship for surface waves. That is why for a weakly nonlinear wave 
field the Fourier series representation (1) is a more natural tool for theoretical analyses 
than in studies of turbulent random fields. The directional wave number spectrum F (k) 

F k E k ds( ) ( , )=
∞

∞

∫2 ω ω  (12) 

represents the actual wave number distribution of wave energy. 

ϕ ψs sk k k dk( ) ( , )1 1 2 2= ∫
∞

∞
 (13) 

ϕ ψs sk k k dk( ) ( , )2 1 2 1= ∫
∞

∞
 (14) 

and among the calculated reduced spectra, the spectrum of wave number module, 
characterizing energy distribution over k regardless of the direction of wave 
propagation defined as 
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χ ψ ψ θ θ
π

π
( ) ( ) ( , )

| |

k k dk k ds
k k

s= = ∫
= −

+

∫  (15) 

or the spectrum Fk averaged over all directions of wave propagation 

F F k d F k dk = =∫ ∫
−

+

( ) ( , )θ θ θ
π

π

 (16) 

It is evident from (8-16) that to calculate the reduced spatial spectra (13, 16) we 
need either a model for directional wave number spectra F (k), or the empirical 
description of the whole 2-dimensional symmetrical spectra ψs (k). 

Now, we'll try below to introduce the noncontroversial definitions of what is 
considered in the literature as equilibrium spectra (or equilibrium range in wave 
spectra), saturation (or saturation range in wave spectra), and finally what we'll call 
dissipation subrange in wind wave spectra. 

1.2. The definitions of equilibrium and quasi-equilibrium range in wind wave 
spectra 

The evolution of the directional wave number spectrum F(k, x, t) has been 
described by the so-called radiative transfer equation 

DF (k) / Dt = ∂F (k) / ∂t + Cg ∇F (k) = Sin(k) + Snl(k) + Sdiss(k) (17) 

Here Sin(k), Snl(k) and Sdiss(k) are the so called “source” terms, representing the spectral 
distributions of wind input, nonlinear interactions between wave components, and 
dissipation through wave breaking and wave-turbulence interactions. If for certain 
ranges of k (k, θ) 

DF / Dt = ∂F / ∂t + Cg ∇F = 0 (18) 

such a region can be called an equilibrium range of F (k), and corresponding form of F 
(k) spectra in this region equilibrium spectra. In practice we of course deal with the 
situation when in certain part of k domain 

DF / Dt << S, where S = Snl + Sin + Sdiss (19a, b) 

what means that this part of the spectrum is in quasi-equilibrium. The condition (19a) 
seems to be fulfilled in fetch growth situation not only for major parts of rear faces of 
wind wave spectra, but also for whole energy containing region and that is why the 
similarity descriptions of wind wave development according to Kitaigorodskii scaling 
(Kitaigorodskii, 1962), are both applicable and successful in the prediction of the 
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growth of wind wave field with fetch (for overall characteristics like energy, mean 
wave period, significant wave height and so on). 

1.3. What is so called saturation form of wind wave spectra? 

The most general analyses of equilibrium spectra of the type (18, 19) was done by 
Phillips (1985), who used the dimensional arguments (selfsimilarity) in description of 
Sdiss and assumption about the equality by the order of magnitude of all source terms in 
(17). Later on, Banner (1990) prefer to rely on the pure empirically chosen canonical 
form of 2-D ψs (k) in the equilibrium range of ψs (k) (19), disagreeing partially both 
with Kitaigorodskii (1983) and Phillips (1985) descriptions of equilibrium conditions. 
He put special attention to the role of k-dependent form of angular distribution of 
energy in equilibrium part of ψs (k). The fact that we must talk about an equilibrium not 
only with respect to k, but also to θ, i.e. about certain region (k, θ) in the spatial 
spectrum ψs (k), was first pointed out in Kitaigorodskii et al. (1975) in their discussion 
of the Phillips (1958) hypothesis about the special form of spectra, derived on the basis 
of formation of “wedges”, i.e. sharp wedge type crest for each wave. 

It is the form of the spectra predicted by Phillips (1958) using the latter idea 

ψs (k, θ) = Bk-4 ζ (θ) (20) 

which was later on called a saturation form, and the corresponding range of (k, θ) 
saturation range of wind-wave spectra. As the boundaries of such range in k, θ plane 
are not known a priori, no unambiguous conclusions about the shape of the ψ (k1), ψ 
(k2) or χ (k) spectra can be drawn even if the function in (20) (satisfying the standard 

normalization condition =∫ =
−∞

+∞
ζ θ θ( ) )d 1  is known, unless one makes some additional 

assumptions not following from the similarity arguments itself, such as for instance one 
utilized by Phillips (1966) who assumed that in (20) 

ζ θ
θ θ

π θ θ π
< >=

>

≤ =

0

1 2

m

m/ /
{  (21) 

where θm corresponds to the dominant wave direction. However to some extent the 
general form of Eq. (20) contradicts the data of the most detailed investigation of 
angular energy distribution in the wave spectrum, as obtained by Longuet-Higgins et al. 
(1963), Ewing (1969) and most recently in a comprehensive study of Donelan et al. 
(1985). It seems that k-independence of angular distribution and the lack of sensivity to 
both wind strength and wind direction (tendency to isotropy), as in (20, 21), can be 
observed only for shortest wave components (see for example Banner et al. 1989). 
Because of this both in Kitaigorodskii et al. (1975) and Kitaigorodskii (1983), the 
physical hypothesis about the statistical characteristics of wave field, has been 
formulated to those which were already averaged over all directions of wave 
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propagation, i.e., directly to the spectra χ (k) or Fk as it is done often in the theory of 
small scale axisymmetric turbulence. One of the reasons why k-independent type of 
angular distribution, including isotropy, is of particular interest in deriving the average 
(over all angles) wave statistics is due to the fact that the very special type of statistical 
equilibrium in weakly nonlinear field of surface gravity waves can be described by 
particular form of equation (17) 

Snl ≡ 0  (22) 

which is known as wave kinetic equation. 

1.4. The different types of spectral energy balance for equilibrium spectra 

The forms of equilibrium spectra corresponding to (22) for statistically averaged 
characteristics was first derived by Kitaigorodskii (1983). For isotropic wave field the 
exact analytical solution of (22) was studied by Zakharoff and Filonenko (1966). Later 
on in the series of papers by Zakharoff and Zaslavskii (1982, 1983) it was shown that 
(22) leads to two special forms of Kolmogoroff's type cascade spectra Fk 
(Kitaigorodskii, 1987). One of them based on action flux towards low wave numbers 
were successfully applied for the description and parametrization of wave field in the 
case of the so called fully developed waves (sea also Zakharoff, 1992). We'll not 
consider the fully developed wind wave spectra as an example of equilibrium spectra, 
leaving the latter name just for range of wave numbers (and frequencies) at least larger 
than the peak wave number kp (or frequency ωp). 

Finally let us introduce like In Kitaigorodskii (1983) and Hansen et al. (1990) the 
definition what can be called - the dissipation subrange in wind wave spectra. 
According to these authors this is the range of wave numbers k ≥ kg where two 
conditions are satisfied simultaneously 

Snl (k) = 0 for kg ≤ 0 (23) 

and 

S nl (k) - Sdiss (k) = 0 for k ≥ kg (24) 

Here it is assumed that the wind energy input is negligible not only near the 
transitional wave number kg but for some range of k < kg and that wave breaking 
become a dominant mechanism at wave numbers higher that the wave number kg of 
gravitational instability (which supposedly is much higher than kp) and can depend also 
on direction θ. The basic role of weak nonlinear interactions is then in redistributing 
energy from the range of k ≤ kp (Kitaigorodskii, 1983; Zakharoff and Zaslavskii, 1982) 
to dissipation k ≥ kg in such a way that nonlinear divergence of energy in the range kp ≤ 
k ≤ kg is in balance with wind energy input Sin in a stationary wave field (Phillips, 
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1985). Here by kg it is worthwhile to understand the average value kg = ∫ kg (θ) dϑ so 
that angular distribution can weight towards kg in usual way through isotropic 
dispersion relationship (ωg = (g kg)1/2 (if Doppler shifting is not taken into account). 

According to equation (23) it can exist a direct energy cascade towards smaller 
scales which can cause small scale wave breaking (Zakharoff, 1992); such definition of 
the dissipation subrange means that in wave number (or frequency) domain the 
subrange have to occur as a more rapid spectral fall-off compare with one in 
equilibrium range of wave spectra, and that without the latter there will be no 
dissipation subrange, if we accept the above introduced terminology. According to this 
terminology. Snl (k) ≅ Sinp (k) in the equilibrium range of the spectra, whereas Snl ≅ Sin 
= Sdiss, is just a particular type of statistical equilibrium, like in the Kolmogoroff's type 
of theory of the inertial subrange of quasi-isotropic turbulence, where the dissipation 
subrange due to the direct action of molecular viscosity is introduced in high wave 
number part of the spectra. 

The weak point of such definitions is of course a neglect of the fact that in some 
of the situations the real observed wind wave spectra in energy containing region for 
anisotropic field of waves simply have a "saturation" (20) (Banner, 1990). 

The form of the spectra in equilibrium range can be derived either from a 
asymptotic arguments of domination of direct energy cascade (for isotropic field 
Zakharoff, 1992) which can produce both small scale wave breaking and fractalization 
of the sea surface, or from balance of source term like in Phillips (1985), where 
dissipation and weakly nonlinear interaction was assumed to be of the same order - 
which again means that small scale wave breaks. The equilibrium spectra have the form 
ω-4 or k-7/2 (Kitaigorodskii. 1983). 

1.5. The transitional scales for dissipation subrange in wind wave spectra 

Phillips (1958) first constructive idea about the sharp crests wave became well 
known as hypothesis about the saturation of wave components due to the limitation 
imposed on their growth by breaking process. For frequency spectra it gives simple and 
very elegant result 

S(ω) = β g2 ω-5 (25) 

where β is nondimensional universal constant which at least two order of 
magnititude is less then 1. It becomes very evident from the latest data analyses that 
attempts to apply Phillips spectrum to energy containing but still rear face of the 
spectrum are unsatisfactory. It seems that only after Kitaigorodskii (1983) suggestion to 
consider (24, 25) as an asymptotic form of the dissipation subrange in the quasy-
equilibrium wave spectra, it becomes clear that Phillips (1958) strongly nonlinear sharp 
crests spectrum model must be revisited in favor of the existence of an intrinsic "inner 
scale" of the sea surface on analogy with Kolmogoroff's inner scale in 3-D turbulence. 
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Such inner scales can appear in wave data analyses as transitional wave number kg (or 
frequency ωg), and it becomes customary to consider the deviation from new 
equilibrium form (Kitaigorodskii. 1983, Phillips, 1985) or from direct energy cascade 
form, to be associated with domination of gravitational instability (wave breaking), 
over all other processes, like viscosity or surface tension (Zakharoff, 1992), and 
therefore with transition to the dissipation subrange in wave field. In the next two 
sections I'll discuss the experimental data about spatial and temporal statistical 
characteristics of wind wave field with the purpose to indicate such transition and 
interpret it as an evidence of the existence of dissipation subrange in wind wave 
spectra. The very existence of this subrange is just the indication where wave breaking 
begin to dominate the form of the spectra. 

2. Wave breaking and it's influence on the nonlinear direct energy cascade in wind 
wave field 

2.1. The region of applicability of direct nonlinear energy cascade in the wind-wave 
field and isotropization of the wave field 

In 2-D wavenumber space let us first restrict our attention to wave numbers well 
below those associated with capillary ripples and (those) directly influenced by 
viscosity, so that 

k << kT = (ρw gT-1/2); k<< kν = g1/4 ν-1/2 (26) 

(T is surface tension, ν is kinematic viscosity, and ρw is density of sea water), and also 
well above those k which are associated with the strong direct energy input from wind, 
k = kin ≥ kp, where kp is wave peak number, so that 

k >> kp = ωp
2 g-1 (27) 

Then we can expect that somewhere in the region (26-27) the wind wave field loses its 
directionality (the function kin = kin (θ) must have a clearly defined maximum at θ = θm, 
where θm coincides with the wind direction or the direction of dominant wind waves 
propagation). We would assume for moment that there must exist the spreading cut off 
on scale much shorter than kin, (where the angular distribution approaches isotropy). 

According to Banner (1990), the spreading cut off is still unlikely to occur at k/kp 
≤ 2,6 (as was initially suggested in Donelan et al. (1985)) and is expected to be on 
much shorter scales (Banner et al., 1989). Figure 2 in Banner (1990) shows the 
spreading cut off occurs approximately at k/kp ≥ 9-10. Even though these numbers 
cannot be immediately transferred to the frequency domain range (Doppler shift), it is 
useful to remember that  k / kp ∼ 10 roughly gives ω / ωp = 3 as the lower (in frequency) 
boundary of the region where the wave field loses its directionality (at least 
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qualitatively). In reality it seems that the spreading cut off occurs at wave number 
higher than k / kp ∼ 10. 

Following Zakharoff and Zaslavskii's (1982, 1983) applications of the theory of 
weakly nonlinear surface gravity waves to the analyses of wind wave data the case of 
well-developed waves must correspond to kp = (2 ≈ 4) g / Ua

2, Ua is wind speed, with 
the corresponding region of the energy input 

kinp ≈ (4 - 6) g / Ua
2 = (2-3) kp (28) 

Thus, we can see that in the wave number space there can exist at least a narrow region 

(9-10) kp ≥ k ≥(2-3) kp ≈ kinp (29) 

where in spite of the directionality of the wave field the nonlinear interactions can still 
play a major role both in redistributing energy between directions and in giving rise to 
smaller-scale waves, as well as inducing small-scale wave breaking (Zakharoff, 1992). 
However, it must not be forgotten that in this region both the directionality and wave 
age dependence (at least parametrically) can influence the description of 2-D wave-
field characteristics. This was demonstrated in Banner (1990), who simply accepted the 
Donelan et al. (1985) empirical model of wave spectra with their angular distribution, 
extrapolated to high wave numbers. 

The region described in (28-29) is characterized by strong directionality and 
symmetry relative to the direction of dominant waves (or mean wind direction). 
However, (29) can still be called an equilibrium range of wind-wave spectra contrary to 
the Phillips (1985) and Banner (1990) models, and the similarity hypothesis can be 
applied here to statistically averaged characteristics of the wave field. The end of this 
equilibrium range, which can identify the transfer to a region where dissipation due to 
wave breaking becomes a dominant process (i.e., dissipative part of spectra), depends 
on angle. We will define this end as kbound: 

kbound = kdiss (ϑ) (30) 

We will also use an effective value kg: 

kg = ∫θ kdiss (θ) dθ (31) 

Then the transitional frequency ωg between the essentially nondissipative part of the 
equilibrium range and the strongly dissipative part can be defined as 

ωg = √ gkg (32) 

This ωg (defined through kg) must be close but not necessarily equal to the 
experimentally derived transitional frequency ωg as the beginning of the rapid spectral 
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cut off on the rear face of frequency spectra, associated with an asymptotic approach to 
the saturation form (see (3) below). 

How to estimate ωg? Since the description of the wind wave interaction invariably 
includes a small parameter ε = ρair / ρwater ≈ 10-3, typical scales of energy containing 
weakly nonlinear waves in a developed sea can be estimated as knonlin ≈ g / Ua

2. In this 
case the motion is smooth and can be considered as superposition of weakly nonlinear 
waves. The level of nonilnearity depending on slope growth with increase of 
wavenumber. On some small scales the direct cascade of energy due to weak nonlinear 
interactions can produce small-scale wave breaking (Kitaigorodskii, 1983; Zakharoff, 
1992) and first fractalization of the sea surface. To estimate such transition, Zakharoff 
suggested to put ktrans ≈ ε knonlin ≈ ε (Ua

2 / g). For wind speed of 10 m/s this gives λtrans = 
2π / ktrans ≅ 6 cm. Of course, the process of wave breaking can be observed only when 
smoothing factors such as viscosity and surface tension are unimportant, i.e. 

k trans
k

k

v

T
<{  

However, ktrans can not be identified with transitional scales kg and ωg, introduced in 
spectral language, for two reasons: first, real spectra have a small parameter ε1/2 ≈ 3⋅10-

2; second, the weak nonlinear interactions, leading to small-scale wave breaking and 
fractalization of the sea surface, produced k-7/2 and ω-4 forms of the spectrum 
(Kitaigorodskii, 1983), rather than the nonlinear Phillips k-4 or ω-5 spectra (that is why 
Phillips constants β and B are much smaller than unity, actually 0 (10-2), when they are 
derived from real data (Zakharoff, 1992)). If the Phillips constant was about unity, this 
would have mean that each wave has a sharp wedge-type crest, and this will would 
have been picture of developed wave breaking. Probably this has never been observed. 
Therefore, the transition from the k-7/2 and ω-4 forms of the spectra to the more rapid 
spectral cut off what we'll call the transition to the dissipation subrange, means that in 
this subrange the dissipation of wave energy into turbulence (and then heat) is a 
dominant process, and neither wind energy input nor weak nonlinear interactions play 
any role. Zakharoff (1992) estimated the critical wind velocity for fractalization of the 
sea surface from the condition ktrans ≤ kT, which leads him to Ua

CR ≈ 6 m/sec. This is not 
far from estimates obtained in the last paragraphs of this paper by using data on 
Kolmogoroff microscale in the wind-wave field. It is worthwhile to mention that the 
more rapid spectral fall-off than k-7/2 and ω-4, which in our definition, identify the 
transition to the dissipation subrange, means transfer from a fractal surface with one 
dimension to another type of fractal surface (with other dimension). 

2.2. The form of wind-wave spectra at high wave numbers and frequencies outside 
the region of the direct input of wind energy 

The general similarity hypothesis applied to the region 
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must be based on the dependence of statistical characteristics of wind-wave field on the 
parameters g, k (or ω), and ε0, where ε0 = ∫ ε (θ) dθ is a constant energy flux from the 
region of the energy input through the nondissipative part of spectra towards high wave 
numbers. According: to this hypothesis, (Kitaigorodskii, 1983) for such characteristics 
as the energy spectrum Fk and wave action spectral density Nk = gFk / σ (k) (σ = σ (k) 
is the isotropic dispersion relationship) we have the following expressions: 

Fk = ∫ F (k) dθ = ε0
1/3 g-1/2 k-7/2 φ1(k / kg) (33) 

Nk = ∫ N (k) dθ = ε0
1/3 k-4 φ2(k / kg) (34) 

In the essentially nondissipative range of spectral wave characteristics (k / kg « 1), the 
nonlinear interactions would play a major role, and because they are cubic in, wave 
amplitude, it follows (Kitaigorodskii, 1983; Phillips, 1985) that 

φ1 = φ2 = A (35) 

where A is an absolute constant, supposedly close to unity. We define the dissipative 
subrange as a region where the governing parameters are those that determine 
continuity of the wave surface and therefore, asymptotically Fk and Nk become 
independent of ε0, so that 

φ1 (k / kg) = φ2 (k / kg) = B (k / kg)1/2 as k / kg → ∞ (36) 

where B is another absolute constant. The asymptotic prediction (36) corresponds to the 
Phillips (1958) initial saturation form of the spectra, based on the idea of strongly 
nonlinear waves associated with sharp crests. Here it is based on the value 

kg = Cg / ε0
2/3 (37) 

where C is another numerical constant not necessarily of the order of unity because the 
dissipative process associated with wave breaking is not well-defined (both physically 
and formally). However, it should be remembered that in the 2-D wave number space 
some of the values of kg, for example kg (θmax), where θmax coincide with the direction 
of dominant waves, can be much smaller then kg (37). That is possibly one of the 
reasons why in the Banner (1990) model the wave number spectral density slice in the 
dominant wave direction have a well-defined range (36) throughout the entire region 
(29). This along with the modulation of the forms of the spectra (33, 36) by orbital peak 
velocities, permits Banner (1990) to get the ω-4 form of the frequency spectra close 
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enough to the peak (ω / ωp < 4) (see Fig. 7 in Banner (1990), with the transition to the 
ω-5 form at ωg roughly satisfying (32), and the equality (Hansen et al., 1990) 

ω εg
B
A

g≅ ⋅ / /
0
1 3  (38) 

Before making some refinements of the hypothesis (33-36) about the form of the 
spectral characteristics (see P. III below) we'll discuss the work, which recently has 
been made by Zaslavskii (1998) who have suggested a different approach, by regecting 
the assumption about the prevailing role of direct energy cascade for k > kmax, and 
replacing it by the dominant role of energy input from wind in whole rear face of wave 
spectra. 

2.3. The "blocking interval" in wind wave spectra 

The simplest model of it was suggested by Phillips (1985) who assumes the 
equality (by order of magnitude) of all terms in energy balance, and special selfsimilar 
form for Sdiss. This has been done in his attempt to revisit his earlier theory of saturation 
(1958) with ω-5 for frequency spectra by replacing it to ω-4 form, which at that time was 
favorable choice by experimentalists. However as we'll show in P. III of this paper the 
experimental data definitely indicate the existence of a transition from ω-n (n<5) to ω-5 

form in frequency spectra, and what is even more important, the similar in nature 
transition, occurs in wave number spectra. Recently Zaslavskii (1998) has been trying 
to explain such transition avoiding the assumption about the separation between region 
of energy input from wind and dissipation, assuming instead that on rear faces wave 
spectra must exist the blocking interval k > kbl where Sin = Sdiss as a consequence of 
inequality Snl < Sin. In difference to Phillips (1985) he prefer not to parametrize 
dissipation but to use prescribed Sin and the assumption Snl = 0, which permits to 
introduce again the fluxes of momentum and energy through the spectra as important 
parameters. In the latter range of wave numbers (Snl = 0) the statistical equilibrium 
according to Zaslavskii (1998) must be connected not with a constant nonlinear energy 
flux (due to 4 wave interactions) (as in cascade theory of Kitaigorodskii (1983), 
Zakharoff and Zaslavskii (1982)) but rather with a constant momentum flux through the 
wave spectra at k > kbl due to the presence of Sin for k > kbl. The approximations which 
he used to describe this type of equilibrium permits him to find analytical form of wave 
spectra for weakly nonlinear waves: it gives k-11/3 dependence (instead of k-7/2) and ω-

13/3 (instead of ω-4) (notice the small difference between k-8/3 and k-5/2). These forms of 
spectra still permits to look for difference between this type of equilibrium, and Phillips 
spectra (with k-3 and ω-5 form). Zaslavskii (1998) was trying to show that on condition 
of constant momentum flux for k ≥ kbl it is possible to receive analytically the strongly 
nonlinear Phillips saturation form of the spectra. The transition from quasi equilibrium 
form of the spectra to its "saturation" form he relates now to the balance between 
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energy input and dissipation. As it will be shown below (P. III) the data analysis favor 
the existence of rather noticeable transition from energy containing rear faces of spectra 
to Phillips spectra, which we defined before as a dissipation subrange. 

However explanation of this transition still can be attributed either according to 
Zaslavskii (1998) concept of blocking interval where Sin = Sdiss, or according to 
Kitaigorodskii (1983) transition from nondissipative to dissipative part of the spectra 
due to energy flux towards high wave numbers. Even though Zaslavskii (1998) work 
opens the possibility to explain Phillips saturation form without using the asymptotic 
arguments in similarity considerations (dependence of wave spectra only on g), it is not 
to be forgotten that Zaslavskii (1998) approach is based on pure empirical description 
of wind energy input (extrapolating to high wave numbers and frequencies). Therefore 
it seems to me that assumption about the separation between the region of direct energy 
input and dissipation have at least the equal right to exist as a basis for explanation of 
the observed features of wind wave spectra (not to say that this is supported by some 
numerical calculation of wind wave energy balance indicating that the conditions of 
constant energy flux can exist, though in rather narrow region of the wave spectra 
above peak enhancement region (see for example Komen  et al. (1984)). 

The data analysis which we has been performed below is in fact independent on 
any assumptions about the energy and momentum balance on the rear faces of wave 
spectra. The data analysis only shows that all of the most reliable existing empirical 
data demonstrates the existence of the transition from one form of the spectra to the 
region where spectral fall-off is more strong. This observed transition must be taken 
into account both when empirical description of wave spectra is given, as well as for 
theoretical explanation of wind waves growth. As it was shown in my papers 
(Kitaigorodskii, 1983, 1987), there are very little evidence about the existence of the 
region of inverse energy cascade on the rear face of the wave spectra above peak 
enhancement region except for very developed waves. Therefore we prefer to consider 
those ranges of wave numbers and frequencies where in our opinion the statistical 
equilibrium is described as above (Snl + Sin - Sdiss) = 0, without inverse energy cascade 
from high to low wave numbers. 

3. Transition to dissipation subrange (experimental data) 

3.1. Spatial characteristics of wind wave field 

SWOP spectra 

Dealing with spatial characteristics, it is natural to start with the classical SWOP 
data (Cote et al., 1960). McLeish and Ross (1983), examining the relationships between 
spatial and frequency spectra for SWOP data, have assumed that the effect of the wind 
underlying current is evident. Following these authors, the SWOP results have spectral 
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peak levels well below the level of standard limited fetch conditions. However, 
according to recalculations of Kitaigorodskii (1984), the normalized spectral densities 
Fk have a clearly defined k-7/2 region. In the spectrum a transition to the k-4 form occurs 
at kg = 3,2 kp and kg = 0,2 m-1, or at a fairly large λg ∼ 30 m. The latter value justifies 
the neglect of the Doppler shift effect by permanent drift currents even as strong as 1 
m/s and leads to the transitional frequency ωg ≅ 1,78 ωp. For fully developed waves (kp 
≈ (2 ÷ 4) g / Ua

2), ωg ≈ 1,78 ωp corresponds to ωg ≈ (2,5 ÷ 3,7) g / Ua, still close to but 
less than 4g / Ua. Such a relatively low value of ωg can also be explained by the neglect 
in Doppler shift of orbital peak velocities (Kitaigorodskii et al., 1975), because the 
equilibrium range of k-7/2 in SWOP spectra occurs at k / kp ≥ 1,3 (ω / ωp ≥ 1,14), which 
nearly excludes the peak enhancement region (in the frequency range - ω / ωp < 1,3). 
The latter leads Banner (1990) to the conclusion that the SWOP spectra ψ (k, θm) ≈ 
0,3⋅10-4 k-4 have a dissipative form at rather low wave numbers, and can easily give the 
ω-4 form of frequency spectra at ω / ωp < 3 (due to the modulation by peak orbital 
velocities), even though the spectra at ω / ωp < 3 is little affected by the Doppler shift 
with orbital velocities (this was established for k-4, but not for k-7/2. form). Thus, we can 
consider the SWOP integrated (reduced) spectra Fk (or χ (k)) as an example of fetch 
limited spectra with k-7/2 nondissipative part of equilibrium with a rapid transition to the 
dissipation subrange at kg = 3.2 kp, or, with a SWOP wind speed of 9 m/s, and kg = 0,2 
m-1, kg Ua

2 / g ≈ 1,65. The latter value leads to ωg Ua / g ≈ 1,28, which seems to 
disagree with observations by Kitaigorodskii (1986, 1987) and Hansen et al. (1990). It 
should also remembered that the above mentioned values of ωg Ua / g ≈ 2,5-3,7 were 
based on the assumption that the SWOP spectrum was close to fully developed waves 
which is not the case (kp > (2 - 4)g/Ua

2) (see Table 1). Therefore, we can conclude that 
SWOP spectra, being considered as fetch growth spectra, can have a transition to the 
dissipation subrange in both wave number and frequency domains (!), at lower 
frequencies than those derived by Hansen et al. (1990) (see Table 1). 

Banner et al. (1989) 2-D wave number spectra 

The recent stereophotogrammetric analyses (Banner et al., 1989) produces the 
results which, according to the authors, do not support the wave number dependence 
predicted by the equilibrium spectra for the wavelength range 0,2-1,6 m, in spite of the 
fact that these wave lengths appear to have preferred direction. In particular, the 
correlation with the wind direction is very low (only the fine-scale structure λ < 0,2 m 
seems to have obvious correlation with wind direction). Because of the spectral range 
of wave lengths partially covered by stereophotoanalysis in this work, we have decided 
to examine the data reported by Banner et al. (1989) more carefully, with the purpose 
studying the transition from the spatial equilibrium spectra to the dissipation subrange 
in the same way as was done in Kitaigorodskii (1984) with SWOP data. The range of 
the key parameter Ua

2k / g in Banner et al. (1989) was (1,75-100)⋅103. Wind speeds 
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were from 5,5 to 13,3 m/s. With an average value of the drag coefficient of 10-3, this 
corresponds to the range of nondimensional wave numbers k U*

2/g = 1,6 - 90 (U∗ - 
friction velocity), which is basically the range of wave numbers on the rear face of 
relatively well-developed waves (k > kp). Figure 4 in Banner et al. (1989) summarizes 
the results of four experiments and serves as a proof of the saturation in this range of 
scales. (Within the 95% confidence limits, there is no observational support for the 
linear dependence on U*, implied by equilibrium spectra). While relating the wind 
speed at 54 m (at an oil platform) to the surface friction velocity U*, is not 
straightforward, we still consider the values kg U∗

2 / g ∼ 2-90 to be reliable estimates of 
the conditions of the open-sea wind waves, measured in Banner et al. (1989). A closer 
look at the data presented in Figure 4 leads us to the following conclusions. In exp. 3, 
whose conditions are similar to Hansen et al. (1990), there is evidence of the more 
rapid spectral cut off at approximately kU∗

2 / g = 2⋅10-2. We would like to interpret this 
as a transition from equilibrium k-7/2 to the dissipation subrange. At a wind speed of 5,5 
m/s the corresponding U∗ equals ≈ 20-22 cm/s (Kitaigorodskii and Donelan, 1984), 
which for the transitional wave number kg gives kgUa

2 / g ≈ 9-12 or ωg Ug / g ≈ 3-4. 
This is close to the transitional characteristics reported by Kitaigorodskii (1987), 
Hansen et al. (1990). 

In exp. 4 with a speed of 13,3 m/s the transitional wave number U∗
2kg / g is as 

high as (5-6)⋅102 (this value was also taken from Figure 4 in Banner et al., 1989), thus 
leading, with a drag coefficient of 1,5⋅10-3, to kgUa

2 / g ≈ 31-40 and, hence to ωg Ua / g 
≈ 5,5-6,3, which is much higher than in exp. 3. However, the wave age in exp. 4 is 
about half as small as that in exp. 3, which indicates that the transitional wave number 
and frequency move to lower values as waves develop, in agreement with 
Kitaigorodskii (1983) and Hansen et al. (1990). The dominant wave period Td in exp. 3, 

Td = 6,6 sec., leads to ωp Ua / g ≈ 0,16 << 
ωg aU

g
 ∼ 3-4, which means that in this case 

there is enough space for the equilibrium k-7/2 spectra still above the peak enhancement 
region. The same can be roughly said of exp. 4, where Td = 5,5 sec leads to ωd ≈ 1,54 g 
/ Ua, which is still at least one-third the value of ωg, so in exp. 4 there is also indirect 
evidence of the existence of k-7/2 equilibrium range with a transition to the dissipation 
subrange. In both cases ωd = 2 π / Td ≈ ωp (Banner, personal communication). 

The conditions of exp. 2 were characterized by strong winds and white capping 
that is possibly why Figure 4 in Banner et al. (1989) shows no indication of the 
transition, since the dissipation subrange can occupy the entire domain of observed 
wave numbers (as well as in exp. 1). Indeed, the description of experiments in Banner 
et al. (1989) (see their Table 1 and 2) indicates that only exp. 3 and 4 correspond to 
relatively steady conditions, they both show some evidence of the transition to the 
dissipation subrange, which agrees with the calculations in Hansen et al. (1990) of the 
movement of ωg toward a lower frequency with wave growth (either with fetch or 
duration). 
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Lupyan - Sharkov (1989) wave number spectra 

This is a very interesting study where in Caspian Sea for 50-250 km fetches and 
wind speed U10 ≅ 6,2 m/s the 2-D wavenumber spectra were measured from planes by 
the aerofoto-graphic method. The conditions roughly corresponds to the growth of 
waves at large fetches. The wave number range where this method was permitted to 
describe the sea surface, was 0,3 m-1 - 12 m-1. Figure 5 of Lupyan and Sharkov (1989) 
shows that the more rapid spectral cut off occurs at about k ≅ 1,8-2,0 m-1. At smaller 
wave numbers the spectral shape is close to k-3, which is not too far from the 
equilibrium direct energy cascade k-7/2 form. It is possible to show that the latter range 
is still outside the region of inverse energy cascade, which can occur at k = k Ua

2 / g < 
l,5 ÷ 2. Provided the transitional wavenumber kg lies within 1,8-2,0 m-1 (kg Ua

2 / g ≈ 
7,06-7,84), this leads to the transitional frequency ωg Ua / g ≈ 2,65-2,80, lower than the 
usually accepted value. However, it must be remembered that these data correspond to 
large nondimensional fetches or small values of Ua / Cp, so we will see that they are 
consistent with the other data (Figure 1). It is also interesting to note from their Figure 5 
that at large wave numbers (k = 2-92 m-1), where the Phillips (1958) form of spectra is 
a good approximation, the clear isotropization of 2-D wave number spectra is observed 
even for fetches under consideration (X ≅ 150 km). Thus the data of Lupyan and 
Sharkov (1989)  can  be  considered as good evidence of the existence of the dissipation 
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subrange (in our definition). To locate the transitional frequency 
ωg aU

g
 for Lupyan 

and Sharkov data, we use their Figure 3. As evident from this figure, the range of 
nondimensional fetches gX / Ua

2 is 6⋅103 - 6⋅104, where ωp Ua /g varies from 1,88 to 
0,78. Thus, the average value ωg Ua /g = 2,7 can be placed at the average value ωp Ua /g 
= 1.3. 

Jahne and Riemer (1990) wave number spectra 

Jahne and Riemer (1990) presented very interesting laboratory data on two-
dimensional wavenumber spectra of small-scale water surface waves for fairly large 
fetch of 90 m. The wave number spectra weighted by k4 were shown in their Figures 9, 
10 for different directions: a) along wind (±5), b) (30±5), c) 60±5, together with 
unidirectional spectrum χ (k) integrated over all angles. The range of wind speeds was 
rather wide, from 2,7 to 17,2 m/s. The range of wavenumbers was k ≈ 30-1000 m-1. The 
wave frequency spectra were measured with a slope gauge in the range f = 0,1-100 Hz. 
The inference from their data is that outside the gravity-capillary regime, i.e., at k < kT, 
only a slice through the wavenumbers along wind direction has a relatively clear 
transition from k-7/2 to k-4 for largest wind speeds. We choose three wind speeds, 17,2, 
12,2, and 8,8, to determine the transitional wave number kg (θ = ±5) from their spectra 
(kg = 160 m-1, 170 m-1, and 180 m-1, respectively). This yields the following values: ωg 
Ua /g = 69, 58, 37. To locate these transitional frequencies, we use the JONSWAP 
dependence of ωp on nondimensional fetches, which for the above cited wind speeds 
leads to gX / Ua

2 = 3,0, 6,0, and 11,4, respectively. For this rather small nonimensional 
fetches we choose the values ωp Ua / g = 17,2, 11,9, and 8,5, respectively (see Table 1). 
It is these three points that can still be considered outside the region influenced by 
surface tension. Thus, it is clear that very high values of ωg lie also in the region of very 
high values of ωp Ua /g (even though the ratio ωg / ωp varies slightly 4,0, 4,8, 4,45). By 
using data of Jahne and Riemer (1990), it was possible to construct Figure 1, being 
more complete, than in Kitaigorodskii (1992a,b), which clearly demonstrates the 
dependence of the transitional frequency on fetch (or ωp Ua /g ) (see Table 1 and Figure 
1). 

3.2. Temporal characteristics of the wind-wave field 

Tang and Shemdin (1983) frequency spectra of slope 

In Phillips (1985) paper on equilibrium spectra, experimental data used to prove 
the existence of wind-dependent statistical equilibrium field has been measurements by 
Tang and Shemdin (1983) of the frequency spectra of slope at a fixed point. Their 
results clearly indicate that the lower-frequency part of frequency spectra of slope S11 
(ω) in the upwind and downwind directions, is independent on ω. However, it is exactly 
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the data in this Figure that we’ll try now, as before, to interpret as noncontroversial 
evidence of the transition to the dissipation subrange in equilibrium spectra. The latter 
for slope, according to (33-35), must be independent of ω at frequencies ω between 2 
rad. s-1 and ∼ 6 rad. s-1: 

Sζζ (ω) = S11 (ω) + S22 (ω) = Au* g-1 (39) 

At higher frequencies, where Doppler shift effects can be significant and interpretation 
is difficult, the measured spectra obviously do not follow the form (39), but decrease 
approximately as ω-1 (see Figure 4 in Phillips (1985)), which can be interpreted as 
another asymptotic regime (36) corresponding to the dissipation subrange. At high-
frequency range there is a good deal of sampling errors, without distinct trend in the 
spectral levels below about 7 rad.s-1. The spectral densities measured in the range (39) 
are generally consistent with the value of the Kitaigorodskii constant A, found in 
Kitaigorodskii (1983). Moreover Tang and Shemdin (1983) found that the downwind 
and transverse mean square slopes were nearly equal (isotropy) in cases of a wind field 
with a single well- defined peak. (but the most interesting feature of their Figure 4, the 
possible existence of the transition to the dissipation subrange, was not even mentioned 
in Phillips (1985), and that is why this analysis is presented here). Phillips (1985) 
argued that kinematic effects due to tidal currents and orbital peak velocities become 
serious at about 15 rad/s, as well as dynamic limitations (capillary and influence of drift 
currents), whereas the transition from the frequency-independent flat part of slope 
spectra occurs in all spectra in Figure 4 at frequencies well below 15 rad/s. Here are the 
main characteristics of the transition to the dissipation subrange derived by us from 
curves in Figure 4 in Phillips (1985). 

Curve 1 - u* ≈ 11 cm/s and corresponding wind speeds are in the range 2,2-2,3 
m/s, with value of ωg = 15 rad/s (?) locates the transition to the dissipation subrange at 
ωg Ua / g ≈ 3,36-5,05, which is close to ωg ≈ 4g / Ua - the best estimate of ωg according 
to Kitaigorodskii (1987), and Hansen et al. (1990). However, we'll discuss the value ωg 
= 15 rad/s in curve 1 in more detail below. 

Curve 2 - u* ≈ 27 cm/s and corresponding wind speeds (8,1-7,1 m/s) with 
observed value of ωg = 5,8-7,0 rad/s locates the transition to the dissipation subrange at 
ωg Ua / g ≈ 4,2-4,8, again consistent with all previous estimates. 

Curve 3 - u* ≈ 28 cm/s and corresponding wind speeds of 8,15-7,10 m/s with the 
observed value of ωg = 7,0 rad/s-1 locates the transition to the dissipation subrange at ωg 
Ua / g ≈ 5,0-5,82, little bit higher value than the usually accepted 4,6. 

Curve 4 - u* ≈ 45 cm/s and the corresponding wind speed in the range 11,8-14,5 
with the observed value of ωg = 5,0-5,5 rad/s locates the transition to the dissipation 
subrange at ωg Ua / g ≈ 6,0-8,1, which is now much higher than the results from curve 1 
and 2. To explain this trend in the movement of ωg Ua / g (from curve 1) toward high 
frequencies (to curve 4), we have examined the original data by Tang and Shemdin 
(1983). 
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First of all we have found that for curve 1 the choice of ωg = 15 rad/s is ill-
justified. The choice closer to reality will be ωg = 6 rad/s, which leads to ωg Ua / g ≈ 
2,14. The latter value make the trend in ωg Ua / g (from curve (1) to curve (4)) even 
more obvious. Table 1 presents the summary of Tang and Shemdin (1983), Banner et 
al. (1989), and SWOP results, together with results summarized in Table 1 of Hansen et 
al. (1990). The decrease of ωg with the movement of the peak frequency region toward 
low frequencies is evident. This is a very interesting and important support of the ideas 
of Kitaigorodskii (1983) about the existence of the dissipation subrange in wind wave 
spectra. 

Very recently Jackson et al. (1992) in the extensive study of mean square slope 
data (mss) (based both on the microwave and the optical slicks) have found "that in 
order not to violate the constraints on the spectrum imposed by mss data, the k-7/2 wind 
speed dependent form of the nondimensional spectrum observed in the rear face region 
of the spectrum must transit to something more like the Phillips saturation k-4 form at 
wave numbers about 10 times the peak wavenumber". Their conclusion was that the 
mss data provided rather strong evidence in support of Kitaigorodskii's (1983) view. 
Since according to the above authors kg / kp ≈ 10, this means that ωg / ωp ≈ 3,16, the 
value which is not inconsistent with other data presented in Table 1, The mean sea 
surface slope data, both the microwave and the optical slick and clean surface data, 
strongly support the idea that the k-7/2 equilibrium form cannot be extended to 
wavenumbers k ≈ g / u*

2, as was suggested in Phillips (1985). They are consistent much 
better with the model of the spectra including the dissipation subrange at 10 < k / kp < 
900. For developed waves with kp ≈ g / Ua

2 this leads to k Ua
2 / g < 900, which for a 

wind speed of 10 m/s is still in the range of wavelengths λ > 7 cm, i.e., still outside the 
region where surface tension (λσ = 3 cm) or viscosity (λν ∼ 0,3 cm) are important. 

A usual approach used to estimate some transitional regime is actually limited by 
getting a certain typical average value of ωg Ua / g. The latter is also true for the data 
analysis in Leykin and Rozenberg (1984) to be discussed below. 

The frequency spectra without the dissipation subrange 

We also analyzed the data of Birch and Ewing (1986). In most cases their 
"transitional" frequency ωg Ua /g was less than ωp Ua /g (!), which makes their study 
unsuitable for defining the dissipation subrange. By the way, the old Burling (1959) 
data, analyzed by Phillips (1958) and Kitaigorodskii (1962), have a range of ωg Ua / g ≈ 
0,157-0,23, also very close to ωp in their case, which makes them unsuitable for 
determination of the boundary of the dissipation subrange (Kitaigorodskii, 1997). Even 
data presented by Kahma and Calkoen (1993), which for the "grand" average of 
nondimensional spectra give clear vision of dimensionless frequency ωg Ua /g about 5 
as a possible transition to ω-5 region, we have found not adequate for searching on 
dissipation subrange existence, because for four (out of 7) group of the spectra in Lake 
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Ontario where "transition" was observed (7, 6,5, 3) the corresponding ratios of ωg / ωp 

were equal to 1.15, 1.25, l.14, and 1.2, i.e., all of them were in the peak enhancement 
region. 

Leykin and Rozenberg (1989) spectra 

In Leykin and Rozenberg (1984) 20 spectra were chosen to characterize well-
developed waves in the range of wind speeds of 3,5-13,5 m/s. The measured spectra 
within the frequency range from 2,4 to 7,2 Hz were analyzed in order to find an 
empirical description of the rear faces of the spectra. It was found that for all the spectra 
in the range, 1,2 ≤ ω / ωp ≤ 3,2, i.e., outside the peak enhancement region, there was a 
transition from the wind-dependent ω-4 form to the ω-5 form of saturation. To interpret 
this transition as a transition to the dissipation subrange, the Leykin and Rozenberg 
values of ω / ωp were recalculated into ω Ua /g assuming again kp = (2-4) g / Ua

2. This 
leads to ωp = (1,4-2) g / Ua, and with ωg ≅ 3,2 ωp (Figure 9 in Leykin and Rozenberg 
(1984)) to ωgUa / g ≈ 4,48 ∼ 6,4 with an average value of ωgUa / g ≈ 5,4, which 
resembles the results of determination of the transition to the dissipation subrange 
reported by Hansen et al. (1990). In this frequency range Doppler shifts by peak orbital 
velocities as well as permanent drift currents are not important, so the Leykin and 
Rozenberg (1984) results can also be considered as an indirect proof of existence of the 
transition from the nondissipative form of the k-7/2 equilibrium spectra (k / kp ≤ 10) to 
the dissipation subrange (k / kp ≥ 10) with a broad angular distribution. Thus, the Leykin 
and Rozenberg frequency spectra (1984) can be interpreted basically in a similar way as 
in Hansen et al. (1990), i.e., in agreement with asymptotic prediction (33-36) of the 
theory of nondissipative and dissipative parts of equilibrium spectra. 

Empirical approach by M. Banner (1990) 

In a recent paper by Banner (1990) the emphasis was on the most detailed 
empirical description of fetch limited wave growth spectra given by Donelan et al. 
(1985, henceforth referred to as DHH). In the latter work the face of frequency spectra 
was successfully described by the ω-4 wind-dependent (linearly) form, excluding the 
peak enhancement region, but also in the region where Doppler shift effects by currents 
and orbital peak velocities were still unimportant. However, the DHH data, which 
covered almost all stages of wave growth, do not show a transition to the dissipation 
subrange, which, according to all previously analyzed data, must occur at smaller than 
ω / ωp ≈ 3 scales. This transition was not even considered by Banner (1990), and he did 
not interpret ω-4  region as an equilibrium of the type (33-35). Instead of this, Banner 
(1990) choose a pure empirical canonical form of the spectra ψ (k), corresponding to 
DHH data with an angular spreading distribution for k / kp ≤ 2,6 (spreading cutoff does 
not occur at k / kp ∼ 2,6 (ω / ωp ∼ 1,6), extrapolated to much shorter scales consistent 
with the broad directional distribution observed by Banner et al. (1989). However, 
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according to the latest Donelan's views (cited in Banner et al., 1989; see also Figures 
(3a-3b) in Banner (1990)) there is a transition to the most rapid spectral cutoff in 
Donelan data (personal communication), very similar to the one observed by Longuet-
Higgins et al. (1963) as a deviation from the ω-4 form for frequencies ω / 2π > 1 HZ. In 
Banner (1990), this fact was interpreted not as a transition to the dissipation subrange 
(Kitaigorodskii, 1983, 1987), but rather as a direct consequence of the DHH spectral 
form extrapolated to high wavenumbers with spreading cutoff occurring not before k / 
kp ≥ 10. However, DHH spectra in the range of 1,5 < ω / ωp < 3 can be consistent with 
equilibrium form (33-35), with the energy flux ε0 dependent on wave age Ua / Cp in the 
following way 

ε0 = (Cp / Ua)3/2 Ua
3; αu = [S (ω) / g ω-4] / Ua ≅ 0,006 (40) 

where in Kitaigorodskii (1983, 1986) notations 

ε0 = (m ρa / ρw) Ua
3; m = [0,006 / (2A)3] (Cp /Ua)3/2 (41) 

with the Kitaigorodskii constant A being of the order of unity (Kitaigorodskii, 1983) (A 
= 0,55-0,22). The fact that the energy flux ε0 increases with wave growth (Cp / Ua) is in 
agreement with results of direct calculations of nonlinear interaction in wave generation 
models. Thus, we can argue that DHH results, together with Banner’s (1990) additional 
information, are not inconsistent with our hypothesis for the existence of equilibrium 
form (33-35) with the transition to the dissipation subrange, as it was observed in 
Hansen et al. (1990). According to the latter work, the average value of αu in 
equilibrium spectra (33-35, 41) is equal to 4,4⋅10-3, which together with the observed 
transition to the dissipation subrange at αu ⋅103 (ωg Ua / g) ≈ 2,7 leads to the average 
value of transitional frequency ωg ≈ 6,l g / Ua. This is higher than ωg ≈ 4 g / Ua, 
probably due to the Doppler shift effects, but still with observed range of ωp Ua / g ≈ 1-
3 roughly corresponds to ωg / ωp ≥ 3, which is in good agreement with Donelan et al. 
(1985). 

As a summary of this paragraph, we can make a statement that besides the results 
of Kitaigorodskii publication in 1983, 1986, the data which were analyzed here at least 
do not contradict the hypothesis that there is a transition from equilibrium form (33-35) 
to the dissipation subrange (36). The variability of the lower frequency boundary of the 
dissipation subrange discussed above is shown in Figure 1, together with the data 
published by Hansen et al. (1990). 
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4. Generalizations of asymptotic laws for nondissipative and dissipative parts of 
equilibrium spectra (fractal description of the sea surface) 

4.1 The power approximation of wind-wave spectra throughout the entire 
equilibrium range 

When deriving expression (36) corresponding to the Phillips (1958) saturation 
form, we considered an asymptotic situations corresponding to indefinitely large values 
of k / kg (indefinitely large values k or ε0), where the statistical characteristics of the 
wave field were determined solely by the process of wave breaking. Therefore, the 
magnitude of the spectrum in the dissipation subrange (36) represents, according to 
Phillips (1958), the upper limit of Fk, dictated by the requirement of crest attachment. 
Generally speaking, we cannot in principle disregard the possibility (because of the 
very nature of asymptotic arguments) that for (ε0 → ∞ (λg → ∞, kλg → ∞) the values of 
Fk and Nk (hence S(ω)) continue to depend no matter how slightly on ε0, so that instead 
of (33-35) we have 

Nk = A ε0
1/3 k-4 (k / kg)-p (42) 

Fk = A ε0
1/3 g-1/2 k-7/2 (k / kg)-p (43) 

S (ω) = 2 A ε0
1/3 g ω-4 (ω / ωg)-2p (44) 

where ωg and kg are given by expressions (32, 37), and p is power exponent such that to 
satisfy the predictions (35, 36), it must be 

1 / 2 ≥ p ≥ 0 (45) 

By replacing ε0 (according to (40)) and kg (according to (37)), (42-44) is reduced to the 
usual wind-dependent similarity form of the wind wave spectra (Kitaigorodskii (1962, 
1986)). However, the value of p cannot be derived from dimensional considerations 
only, and the frequency spectra of the type of (44) was first analyzed by Barenblatt and 
Leykin (1981). They were looking for the variations of p with the change in the stage of 
wave development (or in their terminology, with the nondimensional parameter λ0 = 
g λp / Ua

2, where λp is a peak wave length. According to their analyses, the average 
value of p is close to 0 (p = 0,4 ± 0,4) in the range λ0 = 3-8, which corresponds to the 
range of ωp Ua./ g ≈ 1,25-2,05. The latter is very close to conditions of well-developed 
waves, characterized by kp = 2-4 g / Ua

2. Thus, our interpretation of the data presented 
in Barenblatt and Leykin (1981) and Leykin and Rozenberg (1984) is that in the region 
of 1,3 < ω / ωp < 3 (i.e., outside the peak enhancement region and Doppler shift effects) 
the frequency spectra are close to the equilibrium form (33-35) p ≈ 0 with the possible 
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transition to the dissipation subrange (36) only at ωg ≥ 3 ωp (Leykin and Rozenberg, 
1984) or approximately at ωg = (3,75-6,0) g / Ua. This is again close enough to what 
was observed by the others, including DHH. The similar approach was used for l-D and 
2-D spatial spectra by Banner et al. (1989), whose data we have analyzed before. 
Banner et al. (1989) used expression for l-D spectra of the form 

φ (ki) ∼ (U*
2 ki / g)γ 2 ki

-3, (i = 1,2), (k = k1, k2) (46) 

where γ = (1/2 - p) was also found to be close to 0 (actually γ = 0,09 ± 0,09 at the 95% 
confidence level). Thus, Banner et al. (1989) confirm the asymptotic predictions 
corresponding to p = 1/2, embracing the wind-dependent approximation to the observed 
one-dimensional and two-dimensional wave number spectra, with some evidence of 
existence of the transition to the dissipation subrange (see sections 3). 

The most important results of our data analysis are presented in Table 1 and 
Figure 1, which summarize determinations of the transitions to the dissipation subrange 
according to the different authors. The future more comprehensive studies of wave 
characteristics hopefully will permit to check the results presented in Table 1 and 
Figure 1. 

Table 1. Nondimensional transitional frequencies ωgUa /g for different stages of wave development (Uaωp 
/g). 

ωg Ua / g ωp Ua / g lg ωg Ua / g lg ωp Ua / g Source 

6,0 
5,35 
4,5 
2,14 

1,20 
0,96 
0,89 
0,39 

0,78 
0,728 
0,65 
0,33 

0,08 
-0,017 
-0,05 
-0,40 

Tang-Shemdin frequency 
slope spectra 

3,5 
7,5 

0,54 
1,54 

0,54 
0,87 

-0,26 
0,18 

Banner et al., 1989 spatial 
2-D spectra 

1,28 0,78 0,10 -0,107 SWOP 2-D spatial spectra 

7,36 
7,45 
5,73 
4,05 

2,58 
1,91 
1,74 
1,23 

0,86 
0,87 
0,75 
0,60 

0,41 
0,28 
0,24 
0,09 

Hansen et al., 1992 
frequency spectra 

5,4 
4,87 

1,65 
1,65 

0,73 
0,68 

0,217 
0,217 

Leykin and Rozenberg 
frequency spectra 1984 

2,7 1,3 0,43 0,11 Lupyan and Sharkov 
spatial 2-D spectra 1989 

69 
58 
37,7 

17,2 
11,9 

8,47 

1,84 
1,76 
1,57 

1,23 
1,07 
0,92 

Jahne and Riemer, 1990 
spatial 2-D spectra 
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4.2. The relationship between intrinsic microscale in fractal description of sea 
surface and transitional wave number kg 

The power approximations (42-44, 46) were very often used in conjunction with 
consideration of the equilibrium range exponent as a monotonic function of the degree 
of sea development. This assumption was used in both Barenblatt and Leykin (1981) 
and Glazman (1990). In latter it was emphasized that with power-law approximations 
the rapid spectral cut off (in our definition at λg = 2 π / kg) is an intrinsic property of a 
well-developed sea. The existence of this cut off is supported by the fact that the 
downward acceleration of particles can reach (or exceed) g when «breaking» takes 
place, or by the fact that the actual steepness γω of individual wavelets is limited due to 
hydrodynamic instability of steep gravity waves, which tend to break when γω 
approaches a certain value. It was shown in Classman (1988) that in the range of 
wavenumbers 

k / kp < k / kg < 1 (47) 

the statistical characteristics of a random wave field (42-44) represent a «fractal 
regime»' typical of the equilibrium range cascade as in Kolmogoroff's turbulence. 

This means that the field variations at distances exceeding the average value of 
the scale λg are very erratic and represent a surface with a discontinuous r.m.s. slope. In 
other words, the surface on these scales appears as a fractal one. Contrary to this, the 
case 

k / kg > 1 (48) 

can be referred to as a regular regime because the field variations within short distances 
are smooth (short-range asymptotics of the structural function D(r) ∼ r2 corresponds to a 
regular surface), and thus the dissipation subrange in wind-wave spectra (previously 
associated with a saturation form of the spectra) corresponds to a regular regime, where 
the superposition principle is a good approximation. This means that sharp crests are 
associated with the range of intermediate but not high enough wavenumbers of the 
surface gravity wave field where tractalization can be due to surface tension effects. As 
shown by Classman (1988) and some others, the Hausdorff dimension of a Gaussian 
surface corresponding to (42-45) is given by DH = (5-2p) / 2 and, hence, lies inside the 
limits 2,5-2,0. Therefore, μ = (1/2-p) / 2 represents a co-dimension of the surface. A 
particular consequence of p < 1 / 2 is that between two basic wave crests separated by 
the mean dominant wavelength λp = 2 π / kp, there emerge a large number of secondary 
wave crests, which appear due to a cascade pattern in surface geometry (Glazman, 
1986, 1988; Glazman and Weichman, 1988). For the dissipation subrange form of the 
spectra Glazman (1990) suggested the exponentially decreasing function k / kg, i.e., at k 
/ kg > 1, F (k) = ψeq (k) exp {- (k / kg)2}, where ψeq (k) can be a form of equilibrium 
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spectra k-7/2. According to Glazman (1990) estimates, at least for the known 
observations for short fetch cases the surface intrinsic smoothing microscale 1 / kg ≈ 0,4 
m. If 1 / kg = g/ ωg

2 ≈ 0,4 m and if on average a typical value of ωg is ωg ≈ 4 g / Ua, this 
gives Ua ≅ 6 m/s, a very reasonable value of wind speed. Zakharoff (1992) derived the 
same value of wind speed on the basis of the condition that fractalization of the sea 
surface takes place only if λg ≥ λT (λT = 2 π / kT), where λT ≈ ((T / ρa) / g)1/4 is a surface 
tension wavenumber, and λg = ε (Ua

2 / g)( ε = ρa / ρω). Then the condition λg ≈ λT also 
leads to Ua = 6 m/s. However, we have used empirically derived values of kg based on 
spectral analyses, and it is a priori clear that these values of kg are most likely to 
coincide with kg ≈ ε1/2 (g / Ua

2). In this case Ua = (ε)-1/4 ((T / ρ)g)1/4, which leads to Ua = 
1,17 m/s, a too low value compared with Ua = (ε)-1/2 (T / ρg)1/4 = 6,4 m/s. Therefore, the 
limitation of fractalization of the sea surface due to surface tension is very unlikely for 
such small values of wind speed as 1,17 m/s, and the direct cascade of energy on such 
scales has probably never existed. 

Conclusions 

We can conclude that available data on the frequency and spatial characteristics 
of the wind-wave field are not inconsistent with our assumption (Kitaigorodskii, 1983) 
of the existence of the transition to the dissipation subrange at high wave numbers and 
frequencies. Moreover, it appears that in most cases such transition is also definitely 
associated with the existence of equilibrium energy cascade pattern in wind wave 
spectra on scales larger than the transitional scale λg = 2 π /kg. When completing this 
paper the financial support by the Academy of Finland to the author is gratefully 
acknowledged. 
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