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Abstract

Synoptic investigations have indicated that a sufficiently sharp tropospheric mid-latitude jet stream
has the tendency of splitting into two parts, of which one moves north and the other south. This phenomenon
has been related to blocking situations. Theoretical investigations suggest that the splitting into a double jet
configuration may be explained by a barotropic instability mechanism.

Presented here are the more general results of Wiin-Nielsen’ s (1961) six component low order model
designed to investigate barotropic instability. The model is capable of oscillating between single and double
Jjet states for the unforced, non-viscous case. With the inclusion of Newtonian type forcing, wavelength
dependent multiple steady states are possible, the stability of which are influenced by the extent of horizontal
shear within the system. For relatively low shear, both a single and double jet configuration are found to be
stable, while for extreme shear values only the double jet structure is stable. With extended long term
properties of the model for the forced, viscous case, and under certain forcing conditions, such a low order
model is capable of capturing the extended barotropic characteristics of double jet blocking situations.
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1. Introduction

Upper westerly structures are known to become unstable when the configuration of
a single maximum jet stream is sufficiently shatp (Cressman, 1950; Riehl et al, 1950). This
canresultinthe splitting of the jet stream into anorthern and southern component, a structure
that has been observed to be highly stable, often lasting for periods of 1 to 2 weeks occa-
sionally longer (Rex, 1950). Such a development is ofien referred to as the establishment
of a blocking situation, and is an example of internally generated low-frequency variability.
Internal instability is normally a result of barotropic shear zones at the smaller scales within
a flow. However, evidence suggests that the low frequency behaviour of a spatially stable
mean flow may be the result of larger scale barotropic instability (Holton, 1992). Atmos-
pheric energy calculations support this theory revealing that at least two independent re-
gimes exist, typically baroclinic and barotropic. During periods of barotropic instability,
the majority of energy is contained at the large-scales, and as such are conducive to the
generation of anomalous zonal flows (Wiin-Nielsen, 1986).
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Previous studies with forced, simple low order barotropic systems, on the sphere
(Wiin-Nielsen, 1979), and the B-plane (Charney and Devore, 1979), have concluded that
barotropic instabilities dependent on the intensity of forcing are capable of producing
multiple, stable steady states. In addition, under certain forcing conditions, some of these
stable states may contain enough energy on the wave components necessary for double jet
configurations.

Wiin-Nielsen (1961) investigated some basic properties of the zonal flow by employ-
ing a six-component, barotropic model, without forcing or dissipation. The model included
two components to describe the zonal flow, and four components to describe eddies capable
of transporting momentum, thus interacting with the zonal components. The instability
analysis was performed with a zonal current described by just one of the zonal velocity
components, permitting only the nature of a single jet to be investigated. This revealed that
for sufficiently large zonal velocities, corresponding to large horizontal shear, a single jet
centered on the B-plane channel is unstable.

The purpose of the present paper is to report on investigations of the same six-com-
ponent model, but with the instability analysis performed using a zonal flow described by
both velocity components. In addition, Newtonian forcing and dissipation have been added,
allowing the possibility of investigating the stability of multiple steady states.

2. The low order model description

The model’s geometry is a rectangular region (x, y), with boundary conditions of
periodicity described by the eddies in the east-west direction, and no meridional flow at the
southern and northern *’walls’’. The basic state is described by two velocity components
for the zonal flow (z,, z,), and four velocity components for the eddies (x;, y,, X3, ¥3). The
zonal flow describes the shape of the wind profile across the channel, i.e. N-S direction,
which in this model is represented by a constant velocity (22+z4), and meridional wave

components 2 and 4. For a channel width D, and with A = the zonal velocity is given

D ’
as:

u, = Z5(1 — cos(2Ay)) + z4(1 — cos(4Ay)) €5

The eddies are selected to have meridional wave components 1 and 3, facilitating the
so called ’triad’ interaction between all components describing the basic state. The model

. . . 21
is restricted to a single wave number, k= I

of the channel, D, is kept within allowable limits for a B-plane approximation, and is set to

where L is the zonal wavelength. The width

D =7.0 x 10° m for all calculations presented here.
The zonally averaged and eddy streamfunctions are then respectively:



On Free and Forced Barotropic Flows and Their Stability

7 . 24 .
W 3,0)=D(z, +24) [1 - g} + 2—; sin(2Ay) + i sin(4Ay)

W, (x,y,1) = % sin(hy) sin(kx) J% sin(Ay) cos(kx) +

x—k3 sin(3\y) sin(kx) + —y]f sin(3\y) cos(kx)

The complete streamfunction is then:

W(x,y,t) =W,(3,5) + ¥, (x,y.)
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These functions are inserted into the barotropic vorticity equation applied on the

B-plane. The orthogonality of trigonometric functions across the channel with length L

and width D, reduces the system to six equations describing the development of six

velocity amplitudes; z,, 74, X, X3, ¥, ¥3 over time. These equations, with the addition of

Newtonian forcing are then (Wiin-Nielsen, 1961):

dZZ *
s 2kQM +Y(z, — 25)
d *
U= 2OM A 2
dx, *
7 k[(z4 — a122 — b1)y1 — (@222 + aaza)ys] +¥(x1 — x1)
dy. _
i —k[(z4 — a122 — b1)x1 — (@222 + aszza)xs] + Y1 — »1)
dx; *
e k[(z2 + 24— ba)ys + (@422 — asza)y1] + Y03 — x3)
a3
ar —k[(z2 + 24— b3)x3 -+ (aaz2 — asza)a ] + Y3 — ¥3)
where for convenience we have introduced the notation:
M =x1y3 — x3y 0= }L—z R= E
1Y3 31 k2 kz
0-3 50+1 70-1
a =" =" a3 =
2(1+Q) 2(1+Q) 2(14+Q)
30-1 150-1
Q=7 as=—_"———
2(1490) 2(1490)
' 1+0) T (1490)
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The term y(x" — x), where x represents any one of the six velocity amplitudes, is the
Newtonian forcing applied to the system. The rate of forcing is described by v, the extent

of which is given by the forcing parameter x” of the respective velocity component.

3. Stability of the unforced zonal current

Here the stability of an unforced (y = 0) zonal flow to small wave perturbations is
analysed. The arbitrary zonal current is described by two velocity components, (z,, z4),
permiiting the stability analysis of both double and single jet structures. Time dependence
is assumed to take the exponential form, and the eigenvalues are found by solving the
resulfing 4 X 4 matrix using a standard routine.

The quantity z,+z, describes the constant element of the zonal velocity (Eq. 1), and
as such is analogous to zonal momentum which is conserved, as seen from the summation
of both zonal flow equations (Eq. 4). An estimate of the observed mean zonal wind at
500 mb between equator and pole is between 0-30 m/s (Holfon, 1992), this range of values
for zonal momentum is used in the following calculations. With these restrictions the
critical curve, i.e. transition from stability to instability, can be computed by setting zonal
momentum to 15 m/s and finding z, as a function of wavelength L (Fig. 1). This enables
the selection of an unforced initial state, with well known stability conditions, prior to an

experimental run. The solution has an asymptote at L = 4.8 x 10° m for both negative

roots, apparent from Fig. 1 where the critical curve tends to # infinity. As L tends to zero
the critical curves for both the lower negative and positive roots converge, reducing the
possibility of small scale instabilities. Fig. 1 reveals that unstable regions are restricted to
areas between the critical positive root and lower negative root, and also above the upper
critical negative root. All other regions can be considered as stable for the unforced model.

Given a conserved momentum, it is possible to determine a single or double jet
configuration by selecting the velocity amplitude z, alone, and observing the critical
inequalities:

For a single jet: z > g X momentum

For a double jet: z2 <§ X momentum

For a double jet separated by easterlies: z2 <0

Observed double jets are not normally separated by easterlies. The region in Fig. 1
corresponding to perhaps more realistic double jets separated by westerlies, indicates that
these structures are stable, except for a limited region at the smaller scales.
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Fig. 1. Stability of the zonal current for the unforced case, including both positive roots (solid line) and
negative roots (dashed line). The unstable regions are labelled, all other regions can be considered stable.

To illustrate the performance of this unforced model two integrations are presented,
both at a wavelength L =7 X 10° m but with different initial conditions. Fig. 2a displays
the zonal velocity behavior in time with initial state z, = 40 m/s and z, = -15 m/s when a
finite eddy perturbation of x, ='0.001 m/s is applied. The resulting zonal velocities after
approximately 200 hours begin to oscillate in antiphase between their initial values and a
minimum (for z,), maximum (for z,). The zonal and eddy kinetic energies can also be seen
to oscillate in antiphase, as would be expected in an energy conserving environment. The
energy conversion (Fig. 2b), reveals how energy is drawn from the zonal flow by the eddies
as the wave grows, returning to the zonal flow as the wave decays.

Maximum time variations are possible by setting the constant zonal velocity (z, +
Z4) to zero and the eddy component x; = 15 m/s. The zonal velocities (Fig. 3a) again
oscillate in antiphase, though with increased amplitudes and a period of approximately
150 hours. Zonal kinetic energy is observed to periodically pass through zero, a result of
the initial state being one extreme of the oscillation. The energy conversion (Fig. 3b) is
again periodic, though more irregular than the previous example as the wave develops.
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Fig. 2. a) The time variation of velocity components z, (solid line) and z4 (dot dashed line) for an unstable
zonal current, with initial values: z2 = 40 /s, z4 = -15 m/s and eddy perturbation x; =0.001 m/s b) zonal to
eddy kinetic energy conversion.
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These experiments demonstrate that the model can reproduce the development of a
wave as it undergoes a vacillation, and is thus capable of illustrating the essential parts of
barotropic development for both single and double jet structures.

4. Steady states of the forced system

Constant forcing and dissipation are now added to the system through careful selection
of the Newtonian forcing components yand x, providing the possibility of multiple steady
states. The four equations for the eddy components (Eq. 5) are linear in xy, y;, x5 and y;,
whose solutions are found and inserted into the equations describing the zonal flow com-
ponents (Eq. 4). Assuming a steady state, summation of the two zonal equations under
stationary conditions reveals the relationship:

HLh =5+ )

This permits the elimination of one zonal variable, i.e. z,. With theremaining equation
now dependent on only z,, the real root solutions can be found numerically for given forcing
parameters over a range of wavelengths. The stability of the resulting jet structures are then
investigated by linearizing the equations around the steady state, and determining the eigen-
values numerically.

In the following experiments the forcing rate was set to a typical value of dissipation
in the atmosphere aty=1 X 1057, eddy forcing parameters were selected to be:

A=20m/s  x3=20m/s
yi=10m/s  y;=10m/s ®)

Fig. 4a displays the solution of zonal velocity z, where z; = 30 m/s and z, = 0 m/s,
resulting in a single jet maximum of 60 m/s centered on the channel. There is only one
stationary, stable solution for the majority of wavelengths up to L = 8500 km. However,
triple solutions are present over a limited interval between 8550 - 8770 km, where steady
states with largest and smallest values of z, are found to be stable, while the middle state is
unstable. For wavelengths larger than this interval only one stable solution is obtained,
though with a considerably reduced value of z,.

Forthe majority of sensible values on forcing parameters z, and z, the stability scenario
is similar to that above, but the extent and position of the triple solution wavelengfh interval
is forcing parameter dependent. In extreme cases, with a large difference between z; and
24 the stability of triple solutions can differ. Fig. 4b shows a case where z, = 30 m/s and

74 = -20 n/s, again regions with a single state are stable, however only the lower z, state is
stable over the triple solution interval (5000-10000km). A possible reason for the instability
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of the largest z, state is that the steady state jet is now extremely sharp with a relatively small
wave amplitude. It is understood that the jet would be highly unstable if the perturbation
was infinitesimally small, but also small, finite disturbances are found to be unstable.
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Fig. 4. Steady states of a forced flow with forcing parameters xj = x3 = 20, yT = y§ =10, a) 25 =30,z4 =0,

and b) 75 =30, z4 = —20.

The number of steady states is wavelength dependent, with the interval extent of
multiple solutions determined by forcing parameters. This wavelength dependency is em-
phasized by differences in the time development of eddy components x,, y,, x; and ys,
between single and multiple steady states. Fig. 5a displays the time development of x,, y,
(%3, 3 identical but not shown) at wavelength L =8000 km, which eventually forms a stable
limitcycle. Observing the behavior of these same quantities at wavelength L=8100km, Fig.
5b reveals that the asymptotic state is now a point in the x;, y; space (x3, y; again identical
but not shown), corresponding to one stable state.
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Fig. 5. Trajectories of the point x1, y; with forcing parameters 5 =130, zfi =-5, xT = x§ =20, yT = y§ =-5,a)
L = 8000 km, and b) L = 8100 km.
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For relatively low values of horizontal shear multiple steady states have two stable
jetconfigurations. Those with a high value of zonal velocity z, correspond to a sharp single
jet. The eddy streamfunction of such a profile (Fig. 6a) is characterized by a low amplitude
single maximum centered on the channel. This resembles a high index situation. Lower
values of z, describe a much broader jet profile on which a high amplitude wave is
superimposed producing a double jet structure. The associated eddy streamfunction (Fig.
6b) reveals a high amplitude disturbance divided into northern and southern cells of equal
magnitude, reflecting a low index circulation, or blocking. When the horizontal shear
within these multiple steady state structures is sufficiently large, only the low index
configuration is stable.

These results agree with the quasi-stationary regimes obtained from a much higher
resolution, geostrophic, two layer baroclinic model on the B-plane (Vautard and Legras,
1988). They found that the cluster of steady state solutions obtained, could be represented
by three states; two single jet configurations (zonal), and one double jet configuration
(block), all reduced in baroclinicity. Of these three, the block and one zonal solution proved
stable. The jet of the zonal solution was maintained almost exclusively by advective terms,
while the block persisted largely as a result of transient feedbacks from the small scales
to the large scale. This agrees with the present results where multiple steady states are
obtained at the larger scales, and that under forcing conditions where only blocking
structures are stable, the corresponding region of stability extends over a wide range of
the large scales. Although the representation of forcing in the present six component model
is too crude to distinguish between the mechanisms maintaining individual stable steady
states, it has proved capable of reproducing the main characteristics of large scale features
in the zonal flow.

5. Conclusions

These results indicate that the expanded Wiin-Nielsen (1961) unforced, non-viscous
six component model is capable of producing both single and double jet structures over a
range of wavelengths. These can either be stable or unstable, but when considering realistic
values of zonal momentum for which double jet structures exist, they are found to be stable
for the majority of wavelengths. Time integrations of the model reveal that the essential
characteristics of barotropic instability are reproduced as the basic state vacillates between
single and double jets.

The addition of Newtonian forcing to the system permits multiple steady states for
the positive root solution. These are wavelength dependent, occurring as triplets, over

intervals determined by the extent of horizontal shear. The forcing parameters (x*)
influence the shear within the system, where increasing the shear both increases the
wavelength interval and influences the stability of solutions for multiple steady states.
Regions with only single solutions are always stable single jet structures, while the
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28.3 m/s, and b) for a low index case with z; = 16.6 m/s.
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multi-solution regions can have either; a stable single and double jet structure concurrently,
or one stable double jet structure, depending on the extent of horizontal shear within the
flow. In general, the majority of forcing parameters produce stable single jet structures, a
large scale feature observed from synoptic analysis of the mid-tropospheric flow. With
forcing parameters selected to describe a particularly extreme horizontal shear, only double
jet structures are stable, extending over the majority of wavelengths. With the forced
systems longer time-scale properties, this low index circulation remains stable for an
extended period, which may partly explain why blocking situations persist for so long.
The model is thus able to simulate the essential characteristics of a blocking situation, with
forcing parameters describing a suitable "bulk forcing’ term.

In its present form, the model is restricted to barotropic conditions, with all forcing
and dissipation effects lumped together in one term. Expansion of this term to include
descriptions of both boundary layer and internal frictional components, and atmospheric
heating, would permit a more physically realistic study of the forcing required to simulate
large scale zonal features. A model of this nature will need to be baroclinic, requiring a
minimum of 12 components for the inclusion of eddy heat and momentum transports. It
is intended that results of such a formulated simple model will follow shorily.
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