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Abstract

A modern locating method based on global optimization with genetic algorithms (GAs) has been used
to locate seismic events at distances up to 1500 kilometres in Fennoscandia and the surrounding territories.
Of special interest were some well-known mining sites, publicized depth charge explosions carried out by
the Finnish Navy and precisely located explosions set off as part of deep seismic sounding studies. Also,
regional seismic events were examined by relocating them and comparing the results with those of the
Helsinki bulletins. GAs seem to compare well with the more traditional least squares approach as a locating
method. The median location discrepancy between genetic algorithms and least squares optimization of the
Helsinki bulletins have been found to be approximately 21 kilometres, and 90 % of the events located within
63.4 kilometres from the epicentres reported by the Helsinki bulletins. The main reason Jfor location
discrepancies was evidently poorly associated later phases which gave large travel time residuals.

The behaviour of GAs have been studied by applying different travel time models. Complex crustal
models tend to produce more local minima so avoiding monotonous convergence toward the global
minimum.

The theories of evolutionary programming in general are presented and their benefits and possible
drawbacks are discussed.
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1. Introduction

Locations of seismic events are of great importance to seismological analysis. Exact
locations require adequate velocity model and accurate readings of specific phase arrival
times (Gomberg, 1990). Modern locating methods are based on Geiger’s (1910) least
squares method and its extensions. Those methods involve calculation of partial derivatives
of travel time parameters to some position. This is followed by a matrix inversion is per-
formed an updated epicentre. If an event is poorly constrained some numerical damping is
needed to avoid problem instabilities, such as matrix singularity.

Evolution programming, such as genetic algorithms (Holland, 1975), are a class of
computation methods which obtain their behaviour from a metaphor of evolutionary proc-
esses. These algorithms encode a potential solution to a specific problem on a simple
chromosome-like data structure and apply recombination operators to these structures so
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asto preserve critical information. Genetic algorithms are often viewed as multidimensional
optimizers, although the range of problems to which genetic algorithms have been applied
is quite broad.

Genetic algorithms do not need a priori information about the objective function other
than its actual value. The aim is to set the various parameters so as to optimize some output.
Consequently, some function f{x,,xz,....J;,) should be minimized (or maximized). In other
words, they use no predetermined internal model of the objective function. Unlike local,
deterministic techniques, such as the least squares method, genetic algorithms donotrequire
partial derivative information, but only evaluate the misfit function. Consequently, the
problem of non-linearization is avoided. Another property of genetic algorithms is the
collective learning process within a population of individuals parameters sets, cach of which
presents a search point in the space of potential solutions of the problem.

Genetic algorithms start at an arbitrarily chosen initial population of parameter set of
a model, and use probabilistic transition rules to guide the optimization search, while
conventional methods are based on deterministic search. Offspring of smaller misfit are
further reproduced and mated by the genetic operations, e.g. mutations and crossovers of
higher probability. The poorer models in turn die off. Since these algorithms evaluate the
objective function from many parts of the search space, it is not likely that their execution
will be trapped in some local minimum, but they tend to define the near optimal solutions.
Finally, the averaged results of the repeated runs of the algorithm provide near optimal
solutions. The working principle of genetic algorithms is given in the Appendix.

Genetic algorithms are widely tested and used in geophysics. Stoffa and Sen (1992)
used them for seismic velocity inversion on synthetic data and Sambridge and Drijkoningen
(1992) on real data. Also, genetic algorithms have been used for seismic locating optimi-
zation. Kennett and Sambridge (1992) used them on teleseismic events, while Bondar
(1994) located events at local distances. In this study genetic algorithms are used to locate
different type of seismic events at local and regional distances. The velocity model used by
genetic algorithms was the same which is used to compile the Helsinki bulletins (Table 1).
Also, a velocity model used by Saastamoinen and Tarvainen (1984) was used to compare
results and examine the behaviour of genetic algorithms. This velocity model is given in
Table 2 and it was used on explosions carried out during deep seismic sounding studies.
The latter model is quite complex and differs from the crustal model used to compile the
Helsinki bulletins.

Table 1. The crustal model used for comparison and initial calculation of locations with genetic algorithms.

Layer thickness P-velocity S-velocity
15.00 6.07 351
25.00 6.64 3.84
40.00 8.03 4.64

- 8.50 475




Study of the Locating Capability of Genetic Algorithms 3

Table 2. The complex crustal model used forlocatin g calculations of some deep seismic sounding explosions.

Layer thickness P-velocity S-velocity
2.00 5.90 3.33
3.00 6.00 3.40

13.50 6.20 3.71
12.00 6.50 3.54
3.00 7.00 354
4.00 6.95 4.09
8.00 7.10 4.10
10.00 7.60 4.39
13.00 8.00 4.70
25.00 8.30 4.80
25.00 8.40 4.85
- 8.50 4.90

Table 3. Depth charge locations according to Helsinki bulletin and as provided by genetic algorithms.

# | year | mm-dd | hh-mm-ss.s lat fon # | year| mm-dd | hh-mm-ss.s lat lon
1] 1993} 1116 13:06:06.8 | 59.69| 22.77] 11 | 1993 1117 13:06:41.6 | 59.69| 22.77
13:06:05.6 | 59.68] 22.65 13:06:41.1 | 59.65] 22.71
A 1.2 0.01[ 0.12f A 0.5 0.04| 0.06
2 11993| 1116 13:25:48.3 | 59.73] 22.58| 12 | 1993 1118 06:59:50.4 | 59.75{ 22.35
13:25:50.8 | 59.84| 22.77 06:59:53.9 | 59.84 22.65
A 25| -0.09] -0.19] A -3.5| -0.09] -0.30
3 ] 1993 1116 13:28:40.4 | 59.75| 22.62| 13| 1993| 1118 07:22:446 | 59.58| 22.66
13:28:43.0 [ 59.79| 22.87 07:22:47.4 | 59.73| 22.87
A 26| -0.04{ -025] A 28| -0.15] -0.21
4 11993 1116 13:58:51.0 [ 59.83| 2237 14 1993] 1118 07:25:46.7 | 59.49! 2274
13:58:54.8 | 59.70| 22.93 07:25:48.8 | 59.57| 22.87
A 3.8 -0.13] -056] A 2.1 -0.08] -0.13
5| 1993] 1116 14:01:13.7 | 59.59| 22.75) 15| 1993| 1118 07:25:42.0 [ 59.69| 22.48
14:01:15.4 | 59.65| 2293 07:25:449 | 59.79| 2271
A -1.7( -0.06] -0.18f A 29| -0.10] -023
6 {1993| 1117 09:14:40.5 | 59.69| 22.65| 16| 1993 1118 07:54:47.7 | 59.62| 22.52
09:14:39.8 | 59.79| 2239 07:54:488 | 59.73| 22.49
A 07| -010[ 026§ A -0.11] 0.03
711993 1117 10:51:42.0 | 59.63| 22.66] 17 | 1993 1118 07:57:003 | 59.79| 2236
10:51:45.4 | 59.76 22.90 07:57:02.8 | 59.87| 2261
A 26| -0.13] -024] A 25| -0.08] -0.25
8 | 1993 1117 11:24:41.8 | 59.63| 22.61] 18 | 1993| 1118 08:03:41.4 | 59.71) 22.65
11:24:44.8 | 59.68| 22.90 08:03:44.5 | 59.82| 22.90
A 3.0 -005] -029] A 3.1 ] -0.11} -0.25
9 11993 1117 11:27:22.1 | 59.70] 22.69] 19| 1993| 1118 08:32:34.5 | 59.68| 22.66
11:27:20.0 | 59.59| 22.39 08:32:36.6 | 59.62| 22.96
A 1.9 0.11f 0305 A -2.1 0.06] -0.30
10| 1993] 1117 11:27:333 | 59.81| 22.53
11:27:36.6 | 59.90( 22.80]| Median difference -2.6s -0.09°| -0.25°
A -33 | -0.09( -0.27
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Asmentioned by Sambridge and Gallagher (1992) and Bondar (1 994) in the locating
problem solution genetic algorithms try to minimize the root-mean-square of the weighted
travel time residual over stations namely:

N
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where N is the number of stations w; is the weight and T, is the travel time residual at
the ith station. The station weights are determined during the search in the same manner
as for the least squares approach to epicentre and focus location (Lee and Lahr, 1972;
Klein, 1978).

2. Locating well-defined explosions at local distances

First we studied the locating capability of geneticalgorithms atlocal distances (A<200
km) from the detecting network and compared the results with the actual epicentres. The
events selected for this set are shown in Figure 1. The first set are mining explosions in the
Siilinjérvi mine, and the second set consists of depth charge explosions carried out by the
Finnish Navy.

3

62

22 2 2% 28° 30° £
Fig. 1. Events used in this study and listed in the Helsinki bulletins. The cluster'in central Finland, denoted
by “A” presents explosions in the Siilinjirvi mining area. In Gulf of Finland the events are depth charge
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The Siilinjérvi mine is a well-known phosphate mine in Finland. Explosions take
place 2-3 times a week at 11-12 GMT (1-2 PM local time). Seismic signals from these
explosions, reaching yields up to eighty tonnes have very strong onsets (Tarvainen, 1992)
and are detonated in two separate fields. Blasts in the nearby Nilsid mine (A~20 km) are
sometimes erroneously associated with the Siilinjérvi mine, but the respective shooting
practices are different. Also, the corresponding seismic wave forms are different. In 1994
altogether 107 explosions in the Siilinjarvi mine and its vicinity were located using the GA
approach using the recordings of the three stations in central Finland (SUF, KEF and KAF).
The locating clusters are shown in Figure 2. Events are plotted according to their distance
from the nearest station SUF (62.7191°N, 26.1506°E, h=185 m). They locate either at
distances less than or equal to 90 kilometres or more than 90 kilometres from the station,
respectively. The “coded” explosion site deviates to some extend from both of these fields.
Some over spread events can be associated with any of these fields or with the mine in Nilsi.

Siilinjirvi and Nilsid mines
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Fig. 2. The close-up examination of epicentres near the Siilinjirvi mine. The open circles and crosses are
events, for which the SUF epicentral distances are below and beyond 90 km, respectively. The epicentres
found in Helsinki bulletins are shown by dots. The big circle denotes the Siilinjirvi “code site” while the
triangle is the location of Nilsi& mine, used in the Helsinki bulletin location template procedure.

The Finnish Navy has a well defined practice areas both in the Gulf of Bothnia and
the Gulf of Finland. The explosions are detected at many of the Finnish seismograph stations
evenbeyond 250kilometres. Further, the location can be confirmed from bulletins. In Figure
1 nineteen clustered depth charge explosions close to the town Hanko (denoted by “B” in
the map), in November 1993 are located by GAs. The eight explosions carried out on 18th
November have a rough line spacing as a function of time, so the locations obtained via
GAs can be interpreted as a naval ship tracking operation (Fig. 3). The best locating capa-
bility was found using stations in southern Finland at distances less than 200 kilometres,
but seismic signals as far as A=400 km (station JOF), were also utilized.
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3. Comparing the locating capability of genetic algorithms with the
Helsinki bulletins

The Helsinki bulletins (also cited as Seismic events in northern Europe) are widely
used as a reference data base to examine the capability of seismic monitoring systems. This
bulletin and also, the analysis data of other Nordic authorities are archived at the Institute
of Seismology, University of Helsinki.
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Fig. 3. A detailed plot of the depth charge explosions on 18th November 1993 near the town Hanko, just
above shot-point 18. The movements of the vessel are clearly indicated by the dispersion of epicentres as a
function of time, reflecting the standard manoeuvre practice during this kind of naval operations.

The genetic algorithms are tested on that data, using readings of Finnish seismograph
stations only. The results provided by the genetic algorithms and Helsinki bulletins are
shown in Figures 4a and 4b. The distribution of epicentres obtained by the both methods
are very similar. The well-known mining sites which used to be applied as “code” sites,
show more stable solutions in Helsinki bulletins than provided by genetic algorithms which
did not utilize any predetermined knowledge apart from phase readings.

The events showed a strong concentration in eastern Estonia and Russian Karelia.
Also, some areas in Finland showed strong concentrated epicentres. Events in those regions
are mainly ripple fired mining explosions which are detected only at three stations in
southern Finland. Events at the brink of the search area or far from the detecting network
seem to be hard to locate adequately with GAs. A reason for this may be the applied velocity
model, which evidently is not valid at longer distances.
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Fig. 4. Epicentres provided by genetic algorithms (a) and Helsinki bulletins (b). The oil shale area in Estonia
is clearly visible. Also, some mining sites in Russian Karelia and Sweden have great activity. Most of events
in Finland are construction work explosions and events along the coast are often depth charge explosions.

The locating differences were compared by selecting the corresponding events. This
was done by assuming an event to be common when origin times were within 30 seconds
so allowing quite a big origin time deviations. Consequently, 2384 common events were
found, and are analyzed. The location difference was compuied as a distance between
epicentres obtained via two different methods. The cumulative location errors are shown
in Figure 5. The median location error was found to be 21.3 kilometres. Consequently, the
error is roughly half of the error obtained from 3C studies (Tarvainen, 1992). Further, 90 %
of the events were located within 63 kilometres a result which can be taken to be very
satisfactory, while no other information than phase readings were in hand for genetic
algorithms. No kind of ground truth, like prior knowldge of waveforms from known code
sites were available to steer the solutions as is the case in routine analyses.

Next we examined possible systematic distribution of those events having greater
location errors. This was done by selecting events having a location error at least 63.4
kilometres from the epicentre reported by the Helsinki bulletins. Consequently, we analyzed
239 events. The origin was set at the barycentre of the tripartite network in central Finland,
and the relative location errors were computed from this point. The ten degrees’ bins
represent the relative amount of events having location error of 63.4 kilometres or more.
This means that in any analyzed direction number of events exceeding the location error of
63.4 kilometres were compared with the total number of events in that direction. The
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Location error GA/HEL in 1994

1200 50%=21.3km
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Fig. 5. The cumulative error function. Altogether 2384 events were analyzed and they had 21.3 kilometres

median error and 90 % of events were located within 63.4 kilometres.

Directions of bigger errors
(Brror >= 63.4 km)

Fig. 6. Relative distribution of errors equal to or greater than 63.4 kilometres. The strongest bin pointing to
direction 20° means that 77 % of events detected in that direction had the error of the size mentioned.
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percentage distribution is shown in Figure 6. The greatest relative number of events having
location errors at least 63.4 kilometres were found at a direction of approximately 20°. In
that direction 77 % of analyzed events had errors of the size mentioned. Because, most of
the detecting seismograph stations in Finland are Jocated south of the thicker crust (H~60
km) in central Finland and the Lake Ladoga-Bothnian Bay fracture zone, the seismic signals
arriving from the directions of azimuth =20° are distorted by the crustal effects which in
turn affect the seismic wavetrain and phases.

4. Re-locating earthquakes in Fennoscandia in' 1993

The number of earthquakes in Fennoscandia is approximately one hundred perannum.
The most active zones in Finland and Sweden are around the Gulf of Bothnia. Events there
may be connected to land uplift, also indicating some tectonic push effect from the North
Atlantic ridge. In Norway, earthquakes occur along the western coast. Events in southern
Norway are connected with the coastal areas and to the Viking graben. From northern North
Sea up to Svaldbard regions the earthquakes locate along the continental margin zones
(Bungum et al., 1991). Earthquakes in Fennoscandia are small, seldom having magnitudes
over 4. In this study all the seismograph stations in Fennoscandia have been taken into
account which meant that up to 25 separate stations might have contributed phase readings
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Fig. 7. Earthquake epicentres in northern Europe in 1993. The western Norway epicentre concentration is
very similar regardless of method while events along the north-Atlantic ridge are almost missing when
located with genetic algorithms. This evidently is due to the crustal model which was used. Events there
locate close to the teleseismic window and would be easier to locate with some local crustal model such as
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for analysis. For the study 164 earthquakes were selected as shown shown in Figure 7,
together Helsinki bulletin epicentres.

More detailed analysis was done on earthquakes which occurred along the western
coast of southern Norway which is the most active seismic zone in the entire Fennoscandia.
Figure 8 depicts the epicentres computed by genetic algorithms and those reported by the
Helsinki bulletins. The epicentres obtained via genetic algorithms showed systematic east-
ward bias which clearly is due the to crustal model used to compute them.
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Fig. 8. Epicentres provided by genetic algorithms and compared with Helsinki bulletin epicentres. The
Helsinki epicentres are shown by small circles and the heads of the lines point to the epicetres of genetic
algorithms. Epicentres of genetic algorithms show systematic eastward bias which evidently is caused by
the crustal model used by the genetic algorithms.

5. Comparing results of two different velocity models using exactly
defined explosions

Next we studied the behaviour of genetic algorithms with two different velocity
models and using locations of exactly defined shots carried out during the fieldwork of
FENNIA deep seismic sounding study in 1994. The shot points used in this study were
five small lakes, excluding the shot point in the Gulf of Finland. Explosions up to 1200
kilograms in size were detonated on three nights in these lakes .
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Genetic algorithms can be used to search over a very large initial parameter space.
Consequently, we selected a very large search area spanning from 5° western Jongitude
up to 45° eastern longitude and from 50° northern latitude up to 80° northern latitude,
respectively. The depth constrains were limited to 35 kilometres. These produced a
combined chromosome of 41 bits so totalling as many as 2.2*10'? individual epicentres
in the parameter space with the simpler velocity model and 47 bits chromosome and
1.4%10" individual epicentres with the complex velocity model.

Figure 9 shows the epicentres obtained via genetic algorithms using two different
crustal model. The event which is analyzed is a shot exploded on 6th June 1994 at 22:40
GMT at the point 62.28976°N; 24.49871°E. The event which occurred during the most
silent hours of the day had a good signal-to-noise ratio and it was detected well at all the
stations used to compute the location. The misfit surfaces are very similar and the final
solutions locate very close to each other. The simpler crustal model showed weak east-west
oriented distortion on misfit surfaces while the complex model produced more circular
misfit surfaces. Also, the final solution with the complex crustal model occurred somewhat
at the edge of the minimum misfit layer.

Simple crustal model (4 layers) Complex crustal model (12 layers)

Fig. 9. The misfit layers of two different crustal models. The smallest misfit values (white areas) have travel
time errors less than 0.2 seconds according to the model used. The greatest misfit (the dark gray shaded areas)
value is 1 second.

In Figure 10 all the FENNIA shots which were located with two different crustal
models are shown. The precise epicentre is assumed to locate at the origin and the errors
were computed in x- and y-directions. When the simpler crustal model was used the error
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circle had a radius of 11 kilometres and two events were located close to 15 km way off
from the correct location. When the complex crustal model was applied to genetic
algorithms the epicentres fell within 6 kilometres from the correct location. Consequently,
when more complex crustal models are used the accuracy is notably increased.
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Fig. 10. Location errors of two different crustal models. In the simpler model (10a), which is also used in
the Helsinki bulletins’ production, the error circle has a radius of 11 kilometres. Still, there were two events
which were outside of this circle. Their location errors were more than 14 kilometres. The complex crustal
model (10b) formed an error circle having a radius of 6 kilometres, and all the events located within this
area.
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6. Discussion and conclusions

Genetic algorithms have received much attention over the last few years. They have
proven to be useful in a variety of constrained problem optimization. The genetic operators
(e.g. crossovers) combine the features of two parent structures to form two similar off
springs. Crossovers work by swapping corresponding binary strings representing the
parent solutions.

When the GAs start, the values of the genes for different members of population are
randomly distributed. So, there is a wide spread of individual fitnesses. During the
progress, particular values for each gene begin to dominate and as the population
converges, the range of fitnesses in the population reduces. This variation of fitness range
throughout the run often leads to the problem of premature convergence or slow finishing.

Premature convergence occuts, when there are genes from a moderate highly fit
individuals, which may fast begin to dominate the population, causing it to converge
toward some local minimum and once the population has converged, the ability of the GAs
to continue the search toward a better solutions is effectively eliminated. Crossovers of
almost identical chromosomes do not produce any remarkably improvements. These
problems can be overcome by mutations of higher probability, but one must remember
that they produce only a slow random search.

Slow finishing may take place, if the fitness function has many local minima, the
algorithms may fall into these “fox holes”, without producing good optimization result.
Also, in some cases, after many generations, the populations may have converged well,
but may still not have precisely located the global minimum. The average fitness will be
good, and there may be little difference between the best and the average individuals.
Consequently, there can be an insufficient gradient in the fitness function to steer the
algorithms toward the global minimum.

To make GAs work efficiently on finite populations, one can modify the way of
selecting the individuals to be reproduced. Several methods can be chosen e.g.

e selecting parents according to fitness

e selecting according to ranked fitness score

e explicit fitness remapping by dividing each individuals® fitness by average

fitness of the population

e generation gaps, which is the proportion of individuals in the population, which

are replaced in each generation

In this study genetic algorithms were tested and used to locate seismic events at
regional distances. They were found to be effective for event location problems. They have
the benefit of not to having to compute partial derivatives of parameter function. Conse-
quently, they are very flexible for applying any velocity (travel time) model without
modifying algorithms themselves. Genetic algorithms are very similar to another direct
search method called a grid search. Also, genetic algorithms are independent of the misfit
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function. Genetic algorithms are effective for global optimization because they handle
information globally, i.e. each solution is a potential candidate in the search space to fulfill
the search criteria.

They worked well at any distances, but the best coinciding results with Helsinki
bulletins were found at distances less than 400 kilometres from the detecting network. At
longer distances the effects of crustal model must be taken into account. When using more
complex crustal models and perhaps allowing them to vary within larger constrains it was
found that genetic algorithms could produce epicentres which were equally or better
matched than bulletin epicentres. This in turn, as it involves a more complicated optimi-
zation task, resulted in increased computing time. The events locating close to the
teleseismic window produced some unsatisfactory solutions which can be solved by some
training methods. In general those distances can be seen as a remarkable challenge for
event locating optimization tasks.
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APPENDIX
A genetic algorithm § can be expressed by a 8-tuple like:
8= (P",x,z,s,p,gf,r) (A1)

where P, ={da,...,a, el is a randomly selected initial population, A €N is the number
of population, I eN s the length of the presentation of each individual, s is the selection
operator, p the operator determination function, £ is a genetic recombination operator set
as explained below, fthe fitness function to be optimized £IR" —>"IR and ¢ is the termin-

ation criterion, respectively. The recombination operator set £2 {0):1 xI*">p —)I} in-
cludes genetic operators, such as mutations and crossovers (Holland, 1975). The statistical
elements of these operators are included in some manner in the probability function
p €. Consequently, to an individual a! €P" the operator selects the mating partners out
of the P' if needed and determines the new offspring individual. Operators leading to more
than one offspring at first select one of the offsprings randomly to be a resulting generation
and the rest of the offsprings will be deleted..

The conventional recombination operator used in GAs is the crossover operator

o, €Q, which is applied with some predetermined probability p, and yields a result

a=a, (al,P' , {a, = al'l...al,l)}. Further, there is a schemata H of elements from a set

[0,1}1, and for a given schemata H € {0,1}l a string a €l is called an instance of H.
Whenever H is defined H = (0,1), this bit is identical to a corresponding bit in string a.
The GAs can be evaluated as

e Random selection of mating partners a, = {0y - 0 \from P

e Random definition of crossover position x € {1 . .,l—]}

e Forming two new individuals a,= (0(,,1 s Oy Ol ey o (12,,) and
ay= ((Xa,l s O Qg g~ 0‘1,1)

¢ Random selection of € {all,alz}

Since, there are I-1 possible crossover split points (e.g. ), the probability & of that a

schema H € {0,1]1 is destroyed by crossover is given by
P=0(H)/ (1) (A2)

where §(H) defines the distance between the first and the last fixed position of the
chromosome schema; i.e.
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8:{0,1) = {0,....1-1] )

S (H - (’Yr"%))= max {i v, €{0,1}} ~ min{ity, €{0,1} .

Since, crossover is applied probabiiistically, the expression (A.2) must be multiplied
by the crossover probability p,.

Further, in GAs there are (as in nature) also mutations, which play collateral roles.
They prevent the populations from the total premature loss of alleles at some particular
positions, which may not be recoverable by crossovers alone. To allow this, mutations are
simply occasional random changes in bit-string positions and the probability of bit-muta-

tions p,, is very small. If a = o, (a,,P" | then bit-mutation operator ,, €Q works as
¢ Random selection of positions {xl,...,xh} c { 1,.. .,l} to present mutations

S B[00y 1Oy OOy 10y Oy 1011 | where ar 6{0,1} Vi=1,...,h
are selected randomly. For the mutation operator the probability that a schema
S(H) is destroyed is

1- (1 —p,,,)°(”) (A4

where order o(H) of a schema H e{O,]}I is given by the number of fixed positions of the
schema.

0,1} 5 {0,....-1)

(,(H: (Yl...y,))z fily, efo.1)

For small mutation probability p,, = 0.001, it will be close to 6(H)p,,. The applica-

(A5)

tions allow more than one operator to be applied sequentially to one individual. Conse-
quently mutation is often applied to the offspring created by crossovers, and this might be
included in the scheme H.

Genetic algorithms start with a set of randomly chosen initial population models and
the model parameters are coded as binary strings (can also be strings of real numbers) and
the resulting bit-strings are concatenated to build up “chromosomes”, which are considered
as an instantaneous model space. A genetic algorithm in this study was intended to work
using the following steps:

* Start with a randomly generated population of chromosomes (e.g. candidate

solutions of the problem ~ rough epicentre parameters; geographical limits and
depth maximum)

¢ Calculate the fitness of each chromosome in the population
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e Apply the selection and genetic operator (mutation or crossover) to the popula-
tion to create a new population.

These steps are then iterated several times, and these iterations are called “genera-
tions”. After several generations, the result is often one or more highly fit chromosomes
in the population. The selection can be used in different ways. It can arbitrarily eliminate
the least fit of the population and replicate every other individual once. Also, it canreplicate
individuals in direct proportion to their fitness, or it can scale the fitness and replicate
individuals in direct proportion to their scaled fitnesses.
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