Geophysica (1990), 26, 1, 1-28

A Study of Large-Scale Atmospheric Waves and the Response to
External Forcing

A. Wiin-Nielsen

Geophysical Institute
University of Copenhagen
Haraldsgade 6, 2200 Copenhagen N, Denmark

Abstract

A nonlinear study of forced atmospheric waves is carried out. The nonlinear aspect is the interaction
between the waves and the zonal current. The investigation consists of a baroclinic and a barotropic part.

Using a two-level, quasi-geostrophic model with boundary layer friction and internal friction
depending on the vertical windshear it is demonstrated how the model behaves under varying intensity of
the zonal differential heating.

A zonal steady state may exist. It is stable for a sufficiently small differential heating, but becomes
unstable, if the heating exceeds a certain critical value, which depends on the wavelength except for
sufficiently short waves, where the zonal steady state is stable in all cases.

Steady states containing finite amplitude waves may exist. They may be stable or unstable, and they
may describe physical or unphysical states. The latter is a state with negative values for quantities, which
in reality are positive definite. The physical steady states exist and are stable in exactly the region where
the zonal steady states are unstable. The main conclusion is that for each wavelength and each value of the
differential heating only one stable steady state exists.

The barotropic model contains six components to describe the flow. In addition there is external
forcing and dissipation. Two components describe the zonal flow and four amplitude components describe
the waves in such a way that nonlinear interactionstake pace. The investigation uses the same methodology
as in the baroclinic case. A complete analogy is obtained between the two cases in the sense that a zonal
steady state may exist for a small forcing. For sufficiently large forcing the zonal state becomes unstable,
but a stable steady state with waves may then exist.

Unphysical steady states appear due to the mathematical treatment, which replaces the original
low-order system with a set of equations of higher order. False solutions are introduced in this way, and
they would not appear in the original system.

1. Introduction

The study of atmospheric waves from a theoretical point of view has for several
decades been dominated by a very large number of essentially linear stability studies. These
investigations are to a large degree to be considered as a continuation of the original studies
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by Charney (1947) and Eady (1949) who considered the stability of zonal currents to
infinitesimal wave-type disturbances. While the most general cases, treated by the two
authors, require knowledge of special functions and the incorporation of specific boundary
conditions, it is true that these analytical studies in many later cases are being replaced by
numerical studies, in which the eigenvalues of the proper matrix are determined by
numerical methods. A recent example of the latter procedure is the investigation by
Kasahara and Tanaka (1989).

Some nonlinear studies of the baroclinic stability problem have been made, for
example by Yang (1967) and Pedlosky (1970). These investigations were concerned with
the interaction between the zonal flow and the eddies for finite amplitude disturbances.
The same problem has recently been considered by Thompson (1987) whose approach is
quite different. He used a low-order model to investigate certain basic aspects of the
response of a baroclinic flow to external heating and frictional dissipation. The nonlinear
aspect of this study is the interaction between the waves and the zonal flow although the
model is reduced to such a level that only the transport of sensible heat, but not the
momentum transport can influence the zonal current. The investigation is, however, an
example of the type of study in which the nonlinearity permits the determination of multiple
steady states. The stability of these states can then be investigated. Similar nonlinear
studies, dealing with the problem of blocking, were first carried out by Wiin-Nielsen (1979)
and Charney and DeVore (1979), followed by numerous other studies using essentially
the same technique. Examples are the vacillation study by Lorenz (1963), the orography
studies by Roads (1980) and Killén (1982), the study of structural determinism by
Reinhold (1986) and the blocking study by Wiin-Nielsen (1984).

The influence of heating and friction of the growth of baroclinic waves has among
others been studied by Wiin-Nielsen et al. (1967), but the investigation was linear.
However, it is mentioned here because it uses a procedure which is extended by Thompson
(1987) to the nonlinear problem mentioned above. This procedure consists of replacing
the basic equations for the problem with a new set of equations describing the development
of certain zonally averaged quantities such as the heat transport by the waves, the eddy
kinetic energy and others. While such a procedure does not change the physical processes
incorporated in the model, it can introduce *false solutions’ which do not make sense from
a physical point of view. However, the procedure makes the solution of the problem easier,
and the dependent variables describe directly physical processes of interest.

Thompson (1987) prefers to incorporate frictional processes by using lateral diffu-
sion for both momentum and heat. We shall in the following employ a description using
a surface stress and a stress in the so-called free atmosphere proportional to the vertical
windshear as was done by Wiin-Nielsen et al. (1967). The two different ways of including
friction in the model have been discussed by Charney (1959) who definitely warns against
using lateral diffusion. The treatment of frictional processes by lateral diffusion has some
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mathematical properties which makes the problem to be solved more symmetrical, and
due to this symmetry one can go further using analytical methods.

The baroclinic model to be uses in this study will have a single baroclinic wave
superimposed on a zonal current in a beta-plane channel. Restricting further the study to
a two-level, quasi-geostrophic model we shall need four amplitudes in real numbers to
describe the wave. The zonal currents at the two levels will be described by a single
component, and we shall thus investigate the behaviour of a six component system, for
which we shall formulate a consistent set of low-order equation. With the additional
differences in the formulation of the frictional processes there are sufficient differences
between our model and the one used by Thompson (1987) to make a comparative study
interesting.

The most essential difference turns out to be that for sufficiently low values of the
external heating we find only one steady state solution which is purely zonal and stable
with respect to small disturbances, while Thompson (1987) finds three solution of which
the two non-zonal solutions are unstable. For sufficiently high values of the heating both
models have three steady state solution, but of these only one is stable. This solution is in
both models characterized by a westerly flow in the middle of the channel, a northward
transport of sensible heat, and positive values of the eddy kinetic energies. The possible
zonal steady state is unstable in both models. The same is true for the unphysical steady
state. However, the critical level of the differential heating which permits the non-zonal
stable steady state is different in the two models which are difficult to compare in details
due to the fact that Thompson (loc.cit) gives only non-dimensional results without
specifying the numerical value used for the various parameters, including the value of the
lateral diffusion coefficient.

The baroclinic model is constructed in such a way that it contains an eddy heat
transport, but no eddy momentum transport. Both processes need of course to be present,
but as a step toward this goal it is worthwhile to treat the purely barotropic case following
essentially the same procedure as in the first case. For this purpose we have adopted a low
order model formulated by Wiin-Nielsen (1961), but adding forcing and boundary layer
friction to it.

While there is some reality in the dissipation mechanism, it is always difficult to
formulate a realistic forcing for the barotropic flow, since in reality the forcing comes, at
least in part, from the baroclinic flow, which is excluded in the model. We restrict our case
to a constant forcing on each of the zonal components, but many other cases could have
been selected. One could for example have used an equivalent barotropic model in which
one makes use of the thermodynamic equation neglecting the horizontal advection. This
choice would, however, lead to a model with heating and at the same time requiring that the
direction of the horizontal wind should not change with height. Such an assumption is
obviously unrealistic. As with all barotropic considerations the results are of interest more
in principle than in practice.
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2. The baroclinic model

The model will be the same as the one employed by Charney (1959). This means a
standard two-level, quasi-geostrophic model with the curl of the surface stress proportional
to the relative vorticity at 100 £Pa. The curl of the internal stress becomes proportional to
the thermal vorticity. Since the two information levels are at 25 and 75 kPa we shall for
simplicity take the vorticity at 100 kPa to be 1/2 of the vorticity at 75 kPa. We may then
proceed io give these well-known equations:

o T Vot T Vi B - - S(0t) @D
I(Cr - q *r)
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We shall adopt the following numerical values:

q2=z 4x107"2m™2
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N

e=4x100%s"

er=12x100%s7! 2.2)
K = R/c, = 0.286
fo=10"57

B=1.6x10"1m st

. s s -2 . . . . . .
€ is the vorticity, V the horizontal wind, Q the heating per unit mass and unit time,
and subscripts * and T are defined by the symbolic equations:

Oe=1/2{O1+ O @3)

(Or=1 /2[( )i—( )3} 24

where the subscripts 7 and 3 refer to the 25 and 75 kPa levels, respectively.
For the low order model we define the two streamfunctions by the following
expressions:

B. ——sin(2\y) + — sm()»y)sm(kx) + il sm()»y)cos(kx) 2.5)

V=0
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with an analogous expression for the thermal streamfunction in which the subscript * is
replaced by the subscript 7. For the heating we adopt Q = 0 sin (2\y) indicating that the
heating is a function of ’latitude’ only. In these expression £ = 2m/L, where L is the
wavelength, A = n/W where Wis the width of the channel W = 107 m, and the coefficients
B, E and F have the dimension of velocity.

The specification (2.5) has been selected for simplicity. It is easy to see that the
momentum transport vanishes because it requires additional scales in the zonal or the
meridional directions. On the other hand, it is the intention to vary the wave number k£ and
thereby gain some insight in the scale dependence.

(2.5) is introduced in (2.1), and we use the orthogonality of the trigonometric
functions to derive equations for the time dependent amplitudes. They are:

dB,
dt

£
= -Z(B*—BT)
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*

in which we have introduced the following notations:

2
gk -
2(\2+k%) e
2_q32 k kZ__ 2_3}\‘2
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The quantity (E«Fr - ExF+), appearing in the second equation above is proportional
to the transport of sensible heat. We see this by calculating the quantity



6 A. Wiin-Nielsen

E.Fr-E;F, |
YIEVE = —T,_k_T smz(}\y) 2.8)

in which the subscript E denotes the eddy part of the quantity, while the overbar is the
zonal average. Similarly, we may note from (5) that

VU = 1/2(E.Er + FuFp)sin’(Ay)

v2 = 1/2(E%F2)sin’(\y)

v = 1/2(E% + F2)sin®(\y) 2.9

It is thus natural to seek an equation for (E«Fr - ErF+), and, as it turns out, it is exactly
the quantities appearing in the three parentheses above which turn up in the equation. To
ease notations we introduce:

T = E.Fr - ErF.

S =E.Er+ F.Fy (2.10)
K.=El+ F?

KT = E% + F?-
and replace the first four equations in (2.6) by:

% = ((a* aT)B* - (b* - bT))S + a.BrK7 — ctB7K. — ( (1 + ’Zl) + Er zr) T

ds_ o b by br
= ((a*"aT)Bt— (be - b))T + 4KT+ 4b, K. - (4(1 + b‘,) + €T b.)S

dKr
dt

bKT

dK.
dt

= 2a.B;T + % (S -K.) (2.11)

The first two equations in (2.6) and the four equations in (2.11) form a closed,
nonlinear system in the six variables: Bx, By; T, S, K and Kx.
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3. Steady states and their stability

The major task in this section is to determine the steady states of the system of six
equations derived in section 2. We observe immediately that in any steady state we must
have B = Br. It is also obvious from (2.11) that a zonal steady state exists because the last
four equations are satisfied if the four dependent variables which relate to the waves vanish.
A zonal steady state is therefore:

B, =By

A _qEKA
Br=—+4— 3.1
T der 32 fo 3-1)

T=S=K.=Kr=0

In the zonal steady state the windshear By is related directly to the intensity of the
heating through the middle equation in (3.1) which, using the selected numerical values,
is:

Br=154x10°Q (3.2)

It is seen from (3.2) that for a value of é =1 x 102kt 57! we obtain a value of By
= 7.54 m 5! which is of a reasonable magnitude and independent of wave number.

We proceed to find additional steady states. From the last two equations in (2.11)
we notice that K« and K7 can be expressed in terms of S and T. These expressions are:

*

K=S+ BT

€

3 4crb.
= S- BT
T s+der br(e+der) T

(3.3)

The two expressions in (3.3) are substituted in the first two equations in (2.11). Since
we assumed from the beginning that the heating is purely zonal we get two homogeneous
equations in S and T. Using B« = By they may be written in the following form:

{diBr — (by-br)} S — {dsb2 + ds} T =0

diS + {doby — (bu=by)} T=0 G4
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with the following definitions of the coefficients

2¢ + dgp
dy=——a,-ar-cr
€ + 4er
bT € b*
dy=a)1-—|- —_—
2 ( b.) aT+e+4eT By
1 b.
dz = 4a, —_— 3.5
> CT{ b1(8+481')} (3-5)

br €
d4=8T{E+£+4E,}

b
ds (1+—b:)+81'b—f

The system (3.4) will have nontrivial solutions only if the determinant is zero. This
condition gives an equation for the determination of Br. We note therefore that in the
present steady state the thermal wind is determined independent of the heating. This fact
is solely due to the assumption that the heating is assumed to be of a zonal form. The
equation for the thermal wind is:

e;,B% —eiBr+ey=0 (3.6)
with

ey =didy + dads

e1 = (b.~by) (di+dy) 3.7

€= (b..-br)z + d4d5

Having obtained these formal solutions we are now interested in the regions in which
the various solutions exist, and in whether of not the solutions are stable. It is obvious that
the zonal steady state exists everywhere. To find the region in which the non-zonal solution
exists we proceed as follows In a coordinate system with L, the wavelength, as abscissa
and the heating intensity Q as ordinate we cover the first quadrant with gridpoints and
proceed to calculate the solutions of (3.6). These solutions have to have a real value of By
and, in addition, the computed values of K« and Ky have to be positive. If the latter
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conditions are fulfilled we have obtained a physically meaningful solution. If the condition
is unfulfilled we have obtained a "false’ solution. As we shall see such solutions do exist.
However, we need not pay much attention to them, because they appear due to the fact
that we have replaced the original system of equations with a higher order system where
the dependent variables are of a higher order than the original amplitudes. Imagine for
example that we calculated a time-dependent solution by numerical integration of the
system containing the variables B+, Br, Ex, F», Er, Fr. We could then at any time, and also
in the asymptotic limit, calculate K+ and Ky and would of course obtain positive values.

The result of the repeated determination of the solution in the grid mentioned above
is that the quadrant is divided in two parts as separated by the curve shown in Fig. 1. All
the points to the left of the vertical branch and those below the other branch of the curve
do not produce a physically acceptable solution. In other words, only the points above the
curve have physically meaningful solution of which one has a positive value of By, the
other a negative value. For each steady state value of the thermal wind we proceed to
calculate the steady state values of T, S, K« and Kr.

@,10%kjt's"

1ZSS

I [ | I T
0 5 0 10%m 15 20 25

Fig. 1. The existence of various steady states in a diagram with wavelength as abscissa and heating intensity
as ordinate. ZSS means a zonal steady state, MSS a meaningful stcady state, and USS an unphysical steady
state.

We may illustrate these steady states by plotting the variables as a function of
wavelength for a given value of the intensity of the heating. We have selected
@ =2x 102 It 571, For the physically meaningful solution Fig. 2 contains curves of
By, T, K», Ky as functions of the wavelength, We notice that the baroclinic variables T and



10 A. Wiin-Nielsen

Krgo to zero as we reach the boundaries of the wavelength interval within which solutions
exist. This means that the solutions at the boundaries (i.e. on the curve in Fig. 1) are of an
equivalent barotropic nature. The other meaningless solution has not been plotted, but the
calculations show that all these solutions have negative values of K« and K.

Q=2x10Kkjt's

B;|ms
By Ke.K,m?g?
15
f
AN
|
i
[
10 200,
I
|
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I
K
5 100 : )
I
T T, mPs? ,'
201 |,
10
I J 1 I 1 1 I ] ] I ] |

o0~
0~

3 4 5 6 7 8 9 3 4 5 6 7
L,10°®m L,10%m

Fig. 2. The windshear, By (left scale) and the heat transport (right scale) as a function of wavelength. On the
right side: K+and Kras functions of the wavelength.

We may summarize the steady state findings by saying that below the curve in Fig,
1 only one physically meaningful steady state exists, i.e. the zonal steady state. Above the
curve in Fig. 1 two meaningful solutions exist, a zonal and a non-zonal steady state. The
various possibilities, including the non-physical solutions, are marked in Fig. 1 in the
regions.

If a steady state solution shall be interesting, it should also be stable to small
disturbances. It is thus necessary to conduct a stability investigation of the steady states.
It would be desirable, if the unacceptable solutions were also unstable, but it is not a
necessity due to the arguments presented above. For a given steady state we have derived
the linear perturbation equations using standard perturbation theory. The perturbations
have been assumed of the form:

«

T = Texp(rt) (3.8)
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with analogous expressions for the other five dependent variables. One obtains then a
standard eigenvalue problem with a six by six matrix. Due to the model used in this study
it is very unlikely that the eigenvalue problem can be solved by analytical methods, because
it would in any case lead to a sixth degree equation for the six eigenvalues. Our model is
incidentally in this regard much more cumbersome than the one employed by Thompson
(1987) because his use of only lateral diffusion gives more symmetrical equations. It was
therefore decided from the beginning to use numerical methods. For this purpose we
adopted a computer program which first normalized the columns without changing the
eigenvalues. This program was followed by another which brought the matrix into
Hessenberg form, and the final program calculated the eigenvalues from the latter matrix.
For each type of steady state the eigenvalues were determined in a grid covering the region
of interest.

Referring once again to Fig. 1 we may summarize the results of this extensive
determination of the eigenvalues as follows:

A.  The zonal steady states (marked ZSS) are stable for short wavelength for all values
of the heating and, in addition, everywhere below the curve. Everywhere else

they are unstable.

B. The unphysical steady states (marked USS) are unstable whenever they exist.
C.  The physically meaningful, non-zonal steady states (marked MSS) are stable when-

ever they exist, i.e. above the curve in Fig. 1.

We may also summarize these statements by saying that in each point of the diagram
in Fig. 1 only one stable steady state exists. This state is a baroclinic wave on a zonal
current above the curve and a zonal current without waves below the curve. The baroclinic
wave transports sensible heat northward, and it has positive values of Kr and K.

The numerical results may also be used to calculate the phase difference between
the temperature field and the streamfunction at 50 kPa. The wave in the x-direction was
specified in the form:

X (E sin(lo) + F cos(le) = 4 sin k (+-0) 3.9)
where E and F can have subscripts * or T. It follows therefore that

T = A.A5sin(k(©. - ©1))

S = A.Arcos(k(©. — Or))

Kp =A%

K. =A% (3.10)
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From the first two expressions we obtain:
tan(k(®, - ©r7)) =T/ S (3.11)

It is thus seen that we may compute the amplitude at 50 kPa, the amplitude in the
thermal wave, and the phase difference between the two waves. This has been done for

(AZ =2x 107 ket 57, and the results are given in Fig. 3 which contains the phase
difference ©3; - @, as well. The latter quantity can be calculated from the formula

tan(k(®3 - ©y)) = %T; sin(k(©. - Or)) (3.12)
« T4

Fig. 3 shows how the baroclinic waves become more and more equivalent barotropic
as we approach the wavelengths at which the non-zonal steady state ceases to exist. This
result is in complete agreement with the main conclusions obtained by Wiin-Nielsen (1989)
for the same model without heating and friction.

Ar.ms™ 93-6
0.3+
10
0.2
0.1~
I T T T T T T T
3 5 7 ] 3 5 7 9
L,10%m L.10%n
Agms™
20 -
8,79y
0.3
10 |
0.2
0.1
T T I T | ] I L
3 5 7 9 3 5 7 9
L,10%m L,10%m

Fig. 3. The magnitude of the meridional wind at 50 kPa (lower left), the thermal meridional wind (upper
left), the phase difference ©+-O (lower right) and ©3-0 (upper right) as function of wavelength. Note that
the phase differences are given as fractions of a wavelength.
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We note also that we need only three of the relations (3.10) to produce results such
as those given in Fig. 3. This is due to the fact that the four quantities are interrelated. From
(3.9) it is easy to show that

§2+ T = KKy (3.13)

(3.13) is of course an integral of the system of equations and could be used to
eliminate one of the variables, but this is without any great use unless we were to find other
integrals. It can, however, be used to check the rather complicated algebraic manipulations
necessary to derive the basic system, and it can naturally also be used to check numerical
results.

4 The barotropic case

1t is essential in a nonlinear barotropic model to have sufficient resolution to permit
the interaction between the zonal current and the waves. To obtain this in a minimal system
we may consider a single wavelength in the zonal direction with a time-dependent
amplitude, which is also a function of the meridional coordinate. The dependence of the
amplitude on the south-north direction can be given by a series expansion in trigonometric
functions as long as the considerations are restricted to a beta-plane channel. Such a
treatment has been used by Eliasen (1954) to obtain solutions of the barotropic linear
stability problem by numerical methods. Using the same methods, but restricting the
number of trigonometric functions to the minimal number of two, Wiin-Nielsen (1961)
formulated a six component barotropic system, which was analysed for stability in its linear
form, but also studied in its nonlinear form with respect to momentum transport and
interaction between the zonal current and the waves including some numerical integra-
tions. This system had no forcing and no dissipation.

Some nonlinear barotropic low order systems dealing with possible explanations of
blocking have been treated by Charney and DeVore (1979), Wiin-Nielsen (1979) and
Wiin-Nielsen (1984). Similar studies related to blocking are described among the papers
in Benzi, Salizman and Wiin-Nielsen (1986).

We shall adopt the six component system adding forcing and dissipation to it. The
forcing, which in a barotropic system is somewhat artificial, will be restricted to zonal
forcing as in the baroclinic case. Since the derivation of the basic system of equations has
been described in detail in Wiin-Nielsen (1961) it will not be necessary to repeat it here.
It suffices to summarize the system by specifying the components which are included. The
streamfunction is: ’

B . C .
Y(x,y,t) = D(B+C) (1-y | D) + oy sin(2\y) + my sin(4Ay)
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Es

E, .
+ Ksm}\,ycoskx+ X

sin3Ay cos kx “.1)

+ % sin\y sin kx + % sin3Ay sin kx

The specification (4.1) is obviously the most simple interacting, low-order system
for a barotropic flow. The two meridional scales in the eddy part of the streamfunction
will interact with each other to produce changes in the two components of the zonal flow.
Similarly, a given eddy meridional scale may interact with one or both scales represented
in the zonal flow to create changes in one or more eddy components. With respect to the
width D of the channel we have preferred to use a value equal to the equator-pole distance
as the natural distance, but it is known from other studies that the magnitude of the results
are sensitive to this parameter.

The first two terms in (4.1) contain the zonal part of the streamfunction. The zonal
wind, corresponding to these terms, is:

U, =B (1-cos 2\y) + C (1-cos 4\y) 4.2

The mean zonal wind is thus zero at the boundaries y = 0 and y = D, where D is the
width of the channel. Furthermore, A =/ D. It is seen that the mean zonal wind is
symmetrical around the center of the channel, and it may have one or two maxima,
depending on the values of the time-dependent coefficients B and C.

The last four terms in (4.1) describe the wave. & = 27 / L where L is the wave length,
and Ey, Fy, E; and Fj are the time-dependent amplitude components. The momentum
transport by the wave is:

(ug V), = - (EaF, - E\F3) sin2\y sin2\y 4.3)

and it is seen that if M = E3F; - E;F3 < o then the momentum transport is to the north in
the southern half of the channel and to the south in the northern half, giving convergence
of the momentum transport in the middle of the channel. The reverse situation appears
when M > o.

(4.1) is substituted in the barotropic vorticity equation to which has been added
constant zonal forcing and boundary layer friction. In this equation we introduce a
non-dimensional time

T=—- 4.4

in which T; is one day. We introduce furthermore the notations:
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it TdkE(qI_S’Y13=Tdk§%;Yls= d —2%%;‘{17=Tdk2—7(‘£-;—)
Y33 = Tak %99_) Y35 = Tdk%qg—;) @.5)
B1= Tdk—ﬁ3 Tk 1+9q
in which
i it (4.6)

k'’ kz
The six component system becomes then:

Z—B - ZTqu M- Tds B+Td8 B.

Z—fn—ZTquM—erC+ ETdC.

dE
d—rl - [TdkCFl Yuu BFy = Y15 BFs - Y17 CFs — By F1 | - ¢TuEs

dF
d‘r,l [TdkCEl Y1 BE1 - Yis BE3 -Y17 CE3 - BIEI] - ETdFl (47)

dE
d—; -- [Tdk(B+C)F3 +Y33 BF, — Y35 CFy - B3F3] - 6T4Es

dF
=2 [Tdk(B+C)Ea +v33 BE; — Y35 CE| —[’)3E3] — €T4F

The system (4.7) can be compared with the system (6.7) in Wiin-Nielsen (1961).

Apart from the addition of zonal forcing and dissipation the two systems are exactly
the same when we note that sin(kx) and cos(kx) has been exchanged in (4.1) causing the
changes in sign in the definition of M and in the last four equations in the system (4.7).

We could naturally work with the system (4.7) as it stands. It is, however, quite
cumbersome to do so when we want to find steady states and to investigate the stability
of these states. In agreement with the procedure used in the baroclinic case it is in certain
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respects an advantage to replace the last four equations in (4.7) by four new equations in
the variables

M =E3F, - E\F;

S=E\E; + FiF; 48
Ki=E %+ F?

K3=E3%+F3?

The derivation of the four equations for the rate of change of M,S,K; and Kj is

completely straightforward considering the derivatives of the four quantities in (4.8). We
find:

%ﬁ—l = (B3-B1—Y13B)S - (y33B-y3sC)K, — (Y1sB+y17C)Ks — 26TuM

;—“j = ~ (Bs=B1-y13B) M - 26T,S “.9)
idlf:—l = =2 (y1sB + y17C) M - 2eT K,

D 2 (1558~ y0) M- 2Tk

In (4.3) we have indicated how the parameter M enters in the momentum transport.
The quantity S may be related to another transport. Let us evaluate the transport

—_ 1 F
vivs=T fo v v3dx (4.10)

using the basic specification in (4.1). We find
Vivs = 1 (E\E3 + F\F3) sin’\y cos(2\y) 4.11)
We note also that the two "kinetic energies" enter the expressions:

?=%(E1 2+ F Y sin®ny
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V3= 3 (Es 24 F3 Y sin®y 4.12)
and are thus the kinetic energies in the middle of the channel.

The parameter S may also be called the phase function. We may see this by
introducing an amplitude and a phase angle for each of the two waves.
Let

Ey = Aj cos®y, F1 = A; sin®y, E3 = A3 c0s@3, F3 = A3 sin®3 (4.13)

It is then seen that

S = A143 cos(©1-03) (4.14)
where ©; — @s is the phase difference between the two waves. For M we get

M= A1A3 sin(®1—®3) (4.15)

The phase is thus most easily computed from the expression

©, - @3 = arctan (M/ S) (4.16)

5. Steady states

Considering the system consisting of the first two equations in (4.7) and the four
equations in (4.9) it is seen by inspection that one steady state is purely zonal and is given
by

B=B,C=C,M=3=K,=K3=0 5.1

Additional steady states exist. They are obtained by noting that the last three
equations in (4.9) may be solved for S, K; and K3 in terms of M with the results that

5. BBl g

R, - - 2By ©) i 1w C) 7 (5.2)

Rym - 2(Y33§(;Y35 0) 7
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with 0 = 2eT,.

The three expressions in (5.2) are substituted in the first equation of (4.9). The
resulting equation will have the common factor M which we may assume is different from
zero. In this way we obtain a single equation in B and C. We may also note that if we
multiply the first equation in (4.9) by 2M, the second by 25, the third by -K3, and the fourth
by -K; and add the resulting equations we obtain the result that

% =-20I" 5.3)
with

[ =M+ 8- KK; G4
The solution of (5.3) is

I' =Ty exp (-287) 5.5)

and it follows therefore that in the asymptotic limit of < going to infinity we have
F=M2+§2~R11?3=0 (5.6)

This result can of course also be obtained directly from the four steady state equations
resulting from setting the four time-derivatives equal to zero in (4.9). We may therefore
just as well substitute the three expressions in (5.2) in (5.6).

To complete the determination of the non-zonal steady state we need an additional
relation between B and C. This is obtained by going back to the first two equations in (4.7).
By adding these equations we obtain

dB+C) _

P 38 (B+C) + 18 (B.+C.) 6.7

climinating the momentum transport M. The solution of (5.7) is
B +C = (Bw+C,) (1 - exp (- 387)) + (Bo+Co) exp (- 107) (5.8)

In the asymptotic limit or from the steady state form of (5.7) we obtain

B+C=B.+C.=F (5.9)
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(5.9) is used to eliminate one of the variables, say C, and asingle equation in B remains.
This equation, obtained then from (5.2), (5.6) and (5.9), is

AB+ A B -Ay=0 (5.10)
where

Az = 4 (Y15-Y17) (Y33+Y35) = Y13 2

Ar=2 [2(Y17(733+Y35) -Yas(yis—yin))F + Yls(ﬁs—ﬁl)]

Ao = 4 y17yssF> + (33—32)2 +8% (5.11)

To complete the determination of the non-zonal steady state we find the steady state
momentum transport M from the first equation in (4.7) with the result that

_$(B.B)

Yoo

M= s Yoo = 2Ta kq (.12)

whereafter 5, K; and K; are obtained from (5.2)

The formal solution given above will not always lead to acceptable solutions. The
first requirement is that B, determined from (5.10), shall be real. This requires that the
discriminant

D=A; 2+ 444,50 (5.13)

The second requirement is that K; = 0 and K3 = 0, according to their definition.
Solution in which (5.13) is satisfied, but in which negative energies are obtained, are indeed
found. Such solutions are "false" solutions resulting from the fact that we are working with
the system (4.9) which is of the second order compared with (4.7). Such solutions are
excluded using the same argument as in the baroclinic case.

6. Stability of the barotropic steady states

The stability to the steady states could also in this case be obtained by numerical
methods using the standard technique employed in the baroclinic case. However, due to
the simpler nature of the barotropic case it has been possible to reduce the stability
investigation significantly by analytical methods. Such a procedure leads necessarily to
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rather cumbersome, albeit elementary, algebraic manipulations, ant it has therefore been
decided to disregard the details and reproduce only the major results.

We consider first the zonal steady state. Due to its simplicity it is possible to evaluate
the determinant directly. Of the six eigenvalues one can immediately see that four of them
are two double roots v =—98/2 and v = — 8, both corresponding to stability. d is given
just after (5.2). The remaining two eigenvalues will lead to stability only if

AB%+ AB, ~ 4> 0 6.1)

where the coefficients are given in (5.11). The neutral curve will depend on the value of
the total forcing Fx = B« + C+ Examples of these neutral curves are given in Fig. 4 for
F» _-15,0and 15 ms™.. For each curve the zonal steady state is stable below the curve and
unstable above it. In the barotropic case the situation is thus analogous to the baroclinic
case in the sense that a sufficiently strong forcing will produce instability of the zonal
steady state. In the baroclinic case it is the intensity of the heating, which is the deciding
factor, and in the barotropic case we must consider B« and C« as the forcing coming from
orography or baroclinic processes, which feed energy into the barotropic system.

B,.ms- F=15 Fx0),
F=0

80 F<15

70 -
60

50+

40

30

20 -

0 T T T
5 10 5
L, 10%m

Fig. 4. Neutral curves for the zonal steady state, which is stable below the curves and unstable above them.
The three values of F are given inms™.

The case of the steady states containing waves can also be reduced considerably by
a direct evaluation of the eigenvalue determinant. It turns out that the same eigenvalues

v=-0/2 andv=-0 appear again, but the first of them is this time a single root only.
A cubic equation remains then for the last three eigenvalues. After considerable manipu-
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lations it is possible to show that a fourth eigenvalue is v = - 20, and a quadratic equation
remains. A standard analysis of the roots of this final equation gives the important results
that the wavy steady state is stable exactly where the zonal state is unstable and vice versa.
Referring to Fig. 1 we may say that the wavy steady state is stable above the curve and
unstable below it.

The detailed proof of the statement made above is quite laborious. So far it has not
been possible to construct a more elegant proof. Others may be able to do so. It is, however,
important to note that a complete analogy with the result obtained in the baroclinic case
has been established.

Because of the lengthly algebraic calculations we have checked the results reported
above by a numerical evaluation of the eigenvalues directly from the basic formulation of
the problem. Full agreement was found in all cases.

The interpretation of the results is eased by considering the energetics of the model
used here with forcing on the zonal components only, but dissipation on both the zonal
and the eddy components. In a wavy steady state the eddies will experience a certain
dissipation. It is thus necessary that energy is transferred from the zonal flow to the eddies.
The zonal kinetic energy is in turn maintained by a generation due to the external forcing.
The generation must balance the sum of the dissipation on the zonal scale and the transfer
of energy to the eddies. A schematic energydiagram is given in Fig. 5.

G(Kz) —s—1 K T D(Kz)

z
Y CIK,, KE)
KE — D(KE)

Fig. 5. Energy diagram for the low order, barotropic model.

The arguments above are based on the assumption that both dissipations are positive.
This is indeed that case in this mode: since it is straightforward to calculate that

D(K;) = 2¢K,

D(Kz) = e((1+q)K, + (1+99)K3) 6.2)
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As discussed previously we consider only physical solutions with positive energies.
The most informative quantity is the energy conversion from zonal to eddy kinetic energy.
It is evaluated to be

C(K,Kp) = — kq(B-C)M > 0 (6.3)

Since the conversion in (6.3) should be positive in a steady state as discussed above
it follows that if M is positive then B < C. According to (4.3) a positive value of M means
a transport of momentum away from the middle of the channel and to the north in the
northern part. Fig. 6 shows a family of windprofiles for B = 30 ms™ and for various values
of C. We notice that large positive values of C give a zonal current with two maxima. The
profile with C = 30 ms™ will according to (6.3) have a vanishing energy conversion. Since
M > 0 requires B < C we can thus conclude that a system of two strong jetstreams,
sometimes called a split jetstream, need a convergence of the momentum transport close
to the maxima to be maintained in a steady state.

0.5
n
0.4

I l f |
-50 Upmst 5 100

Fig. 6. Various wind profiles for B = 30 ms™! and C as indicated on the curves, which are drawn for the
interval 0 < n s 1. They are symmetrical around 7 = 1/2.

On the other hand, if M < Othen B > C according to (6.3). Fig. 6 contains windprofiles
satisfying the conditions. To maintain these windprofiles we must have a convergence of
the momentum transport in the middle of the channel. ’

Fig. 7 shows for the case of B« = 30 ms™ the forcing C+ as a function of the
wavelength. The region above the curve contains wavy steady states, which are stable. The
remaining part of the diagram has only stable, zonal steady states.
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Cy. ms’!

By=30ms

-30 4

-20

-10 4

Fig. 7. The region above the curve contains non-zonal steady states for the values of Cx on the ordinate and
L on the abscissa. (Bx = 30 ms'l).

Various aspects of the steady states are displayed in Figs. 8-11. All the figures belong
o the case Bs =30 ms™’, C+=-15 ms. Fig. 8 shows B and C. In the non-zonal steady state
B is somewhat smaller and C equally larger than the values in the zonal steady state, where
B = Bs, C = C». The kinetic energies are shown in Fig. 9 together with the momentum
transport, while Fig. 10 shows the zonal and eddy energies in the same diagram. In Fig.
10 the energies are shown in the unit kJm™2. Compared to observations it is clear that we
have selected an example, where the zonal kinetic energy is somewhat too large and the
eddy kinetic energy too small. Another selection could be made to obtain better agreement
with observations. Finally, in Fig. 11 we show G(Kz) and D(Kz) as a function of
wavelength. These quantities are equal in the zonal steady state. In the wavy regime the
difference between the two curves is equal to C(Kz Kg), which in turn is the same as D(Kf)
(see Fig. 5).
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Fig. 8. The sieady state values of B and C for the zonal and non-zonal cases as a function of wavelength for
Bx=30ms™ and Cx= -15 ms’..
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Fig. 9.- The momentum transport M and the two kinetic energies, Ky and K3, as functions of wavelength (Bs =
30 ms”, Ce = -15 msl).
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Fig. 10. The zonal and edd}' kinetic energies for the steady states in the zonal and the non-zonal cases
(B-—30ms Cx=-15ms")
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Fig. 11. The generation G(K; IZ) and the d13$1pat10n D(Kz) as functions of wavelength for the zonal and
non-zonal states (Bx =30 ms™, Ce+=-15 ms™ )
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7. Conclusions

The major purpose of the investigations reported in this paper has been to generalize
some linear studies to the nonlinear domain. While some studies of a similar nature have
been made in the last decade or so, mainly in connection with the phenomenon of blocking,
we have in this paper preferred to be rather unspecific with respect to the physical nature
of the forcing. We have, on the other hand, tried to illustrate, in a form as simple as possible,
the typical behaviour of the system under various intensities of the forcing.

These studies try to make the investigations of the behaviour of atmospheric waves
more realistic. The situation in the linear, classical investigations of the stability is that one
assumes a zonal current which is constant in time. Superimposing small amplitude waves
one determines the condition under which the waves will grow in amplitude. The validity
of the results is very limited, because in the domain of growth the waves will soon attain
amplitudes, which brings the developments into the nonlinear domain and thus violating
the basic assumption. In the nonlinear stage we expect interactions between the waves and
the zonal current. There should also be both heat and momentum transports, and there will
be energy conversions between the zonal flow and the eddies.

In the first part of this study we have considered the purely baroclinic problem, i.e.
the problem with vertical, but no horizontal, windshear. The motion is forced by external
heating and a dissipation mechanism containing the stress at the surface of the earth and
an internal siress depending on the vertical windshear. Considering the dependence on the
intensity of the heating we have shown that sufficiently small values of the heating permit
zonal stable steady states only. The zonal wind increases with height in the steady states
containing no waves, and the heat transport is carried out by a mean meridional circulation.

When the heating exceeds a critical value (well below typical heating values in the
atmosphere) we find non-zonal stable steady states in a certain wavelength interval, and
within this interval the zonal steady states are unstable. In other words, a wave regime is
created, when the intensity of the heating becomes supercritical. As the intensity of the
heating increases further the wavelength interval containing stable wave solutions will also
increase. The zonal current, which exists in the wave regime increases with height, has
westerly winds in the center of the channel and easterly winds to the north and the south
of the westerly current. The waves on the zonal current slope to the west with height,
transport sensible heat northwards and have positive kinetic energies. Any unphysical
solution with negative kinetic energy is found to be unstable.

With this simple, nonlinear, baroclinic model we are thus able to account for some,
but not all, aspects of the atmospheric general circulation in a qualitative, schematic sense.
The missing features may be ascribed to the simplicity of the model, designed in sucha
way that the momentum transport is excluded. consequently, we cannot expect to obtain
good surface winds or wind structures in the upper atmosphere, which depend strongly on
the momentum transport, as we know from observational studies. We note also that the
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model has forcing on the zonal modes only. As a result of this assumption the zonal motion
is independent of the forcing in the stable wave regime. An improved model should include
heating as a function of longitude.

As afirst step in investigating the momentum transport we have selected a low order
barotropic model with forcing and dissipation, where the forcing once again is restricted
to the zonal components. A major result of the analysis of this model is that the behaviour
is similar in certain respects to the baroclinic model just described. The similarity is found
in the dependence on the intensity of the forcing, Stable zonal steady states exist for
sufficiently low values of the forcing. Forcing above a critical level makes the zonal steady
states unstable in a wavelength interval, but in the same interval stable steady states
containing waves can now exist. The interval increases in size as the intensity of the forcing
increases.

As long as we know that stable steady states containing waves exist, we may in the
barotropic model determine the energy flow from simple reasoning. Since there is no
forcing on the waves, but a dissipation, it follows that the waves in the model must receive
their energy from the zonal flow. The zonal flow, having also a dissipation, must then be
maintained by generation of zonal kinetic energy by the external forcing. In the steady
state the generation of zonal kinetic energy must balance the loss, which is the sum of the
energy conversion to the eddy kinetic energy and the dissipation of the zonal kinetic
energy.

The low order barotropic model used here is capable of describing the first bifurca-
tion from a zonal flow to a flow containing waves. Further bifurcations cannot be obtained
in the present model due to the small number of components. However, barotropic model
with a somewhat larger number of wave components can show additional bifurcations as
shown by numerical integrations of such models.

Acknowledgements

This investigation has been much influenced by the paper by Thompson (1987). It may as a
matter of fact be considered as an expansion of the just cited paper to include a different dissipation
mechanism and to cover the broad spectrum of waves, while Thompson concentrated on a single
wave number.

The author wants to thank Denmarks Meteorological Institute for assistance in preparing the
figures for this paper.

References

Charney, J.G., 1947: The dynamics of long waves in a baroclinic, westerly current. J. of Meteor.,
4, 135-162.

Charney, J.G., 1959: On the general circulation of the atmosphere. Rossby Memorial Volume,
Rockefeller. Institute Press, 178-193.



28 A. Wiin-Nielsen

Charney, J.G. and J.G. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J
Atm. Sci, 36, 1205-1216.

Eady, B.T., 1949: Long waves and cyclone waves. Tellus, 1, no. 3, 33-52.

Eliasen, E., 1954: Numerical solution of the perturbation equations for a linear flow. Tellus, 6,
183-191.

Kasahara, A. and H.L. Tanaka, 1989: Application of vertical mode expansion to problems of
baroclinic instability. J. Afm. Sci., 46, 489-510.

Killén, E., 1982: A note on orographically induced instabilities in a two-level model. J, Atm. Sci.,
39, 500-505.

Lorenz, E.N., 1963: Mechanics of vacillations. J. Atm. Sci., 20, 448-464.

Pedlosky, J., 1970: Finite amplitude baroclinic waves. J. Atm. Sci., 27, 15-30.

Phillips, N.A., 1956: The general circulation of the atmosphere: a numerical expetiment. Q. J. Roy.
Met. Soc., 82, 123-164.

Reinhold, B., 1986: Structural determinism of linear baroclinic waves and simple nonlinear
equilibration. J. Atm. Sci., 43, 1484-1504,

Roads, J., 1980: Stable near-resonant states forced by orography in a simple baroclinic model. J,
Atm. Sci., 37, 1958-1967.

Thompson, P.D., 1987: Large-scale dynamical response to differential heating: Statistical equili-
brium states and amplitude vacillations. J. Atm. Sci., 44, 1237-1248.

Wiin-Nielsen, A., A. Vernekar and C.H. Yang, 1967: On the development of baroclinic waves
influenced by friction and heating. Pure and Applied Geophys., 68, 131-161.

Wiin-Nielsen, A., 1979: Steady states and stability properties of a low-order model barotropic
system with forcing and dissipation. Tellus, 31, 375-386.

Wiin-Nielsen, A., 1984: Low- and high-index steady states in a low order model with vorticity
forcing, Contr. Atm. Phys., 57,291-306.

Wiin-Nielsen, A., 1989: On the structure of transient atmospheric waves, 1. Atmosphere, 2, 3-15

Yang, CH., 1967: Nonlinear aspects of the large-scale motion in the atmosphere. Ph.D. disserta-
tion, Univ. of Michigan, 173 pp. (Available from the Library of Congress, U.S.A.).



