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Abstract

A model for determining the interaction between the lakes in a lake
system is derived. The continuity equations for all the lakes in a lake
system are coupled through discharge equations based on measured
resistance factors for the channels interconnecting the lakes. A resistance
factor shown to be a unique function of the mean of the up- and down-
stream lake levels is introduced. The proposed model is applied to a
system of six lakes, which are also interconnected with the sea. Con-
tinuous simultation of the levels is performed and comparison is made
with observed lake levels.

1. Introduction

In some lake systems consisting of many lakes or ponds interconnected by
short river reaches or just ditches the water can flow from one lake to another
in either direction. A lake can also be connected to the sea and depending on
sea level fluctuations and runoff into the lake the water exchange between the
sea and the lake can take place in either direction. It is clear lake routing cannot
be performed for each lake separately, since it is not known which lake that is
the upstream lake and since the different lakes affect each other. In this paper
a model is proposed by which lake levels and water exchange between different
lakes in a lake system can be determined. The water passages between different
lakes are treated as point losses of energy head. These point losses give a relation
between discharge and water level difference between two lakes. In this way the
continuity equations for the lakes are coupled. First the mathematical background
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of the model is shown. Thereafter a discussion is made concerning the accuracy
of considering the water passages as point losses. The model is applied to a lake
system consisting of six lakes and comparison is made with independent observa-
tions.

Studies of and modelling of water exchange through narrow straits between
the sea or a large lake and an enclosed bay or estuary have been rather frequently
reported in the literature. For these situations density stratification and wind
induced currents must be considered, or the flow must at least be treated as two-
layer open channel flow. Simple gravity exchange flow for tidal flows in inlets
has been studied analytically, e.g. by BAINES (1958) and KEULEGAN (1967).

A method not using harmonic forcing functions was used by Dick and MARSALEK
(1973) for calculating the gravity exchange flow through the Burlington Canal
between Lake Ontario and Hamilton Harbour. Burlington Canal is a short 10 m
deep canal built for large ships. In the present study the conditions are very
different. Systems of many interconnected lakes are considered. The channels
between the lakes are shallow streams in which the flow can be in either direc-
tion, and where the resistance to flow is high. When lake levels are to be com-
puted all the lakes must be considered at the same time. In the applications
there are no density differences between the different lake waters or the water
of the downstream large water body. Therefore density stratification does not
need to be considered.

2. The mathematical model

The continuity equation for a single lake, i, is

as;
EYR ei T Qi-l,i“ Qi,i+1 1

where S = lake water storage above a datum for indexed lake, ¢ = time, 0, =ex-
ternal inflow, ie. runoff from an upstream catchment into lake of second index,
0Q;.,,; = discharge from lake i—1 to lake i, O, t+1 = discharge from lake i to lake
i+1. For numerical computations eq. (1) is written on an explicit finite difference
form.

The flow between two lakes depends on the characteristics of the stream
between the two lakes, i.e. friction factor, length of reach, cross section area and
shape, and on the difference in total energy head between the two lakes. If the
reach is not very long and the lake level fluctuations are slow, the flow in the
channel between the lakes can be considered to be a steady-state flow. Knowing
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the lake levels the discharge between two lakes can be determined from non-
uniform flow computations. Neglecting acceleration losses at the outlet from the
upper lake, the difference in potential energy between the lakes can be written as

L 1
dh = | S,dx @)

¢ f
where dh = difference in potential energy between two lakes, L = length of channel
interconnecting the two lakes, x = distance coordinate along the channel, Sf =
friction slope along the channel.
The friction slope determined by Manning’s equation can be substituted into
eq. (2). Then, the new equation

L
dh = Q% [ n?R¥342dx 3)
0

where #» = Manning’s n, A = cross section area, R = hydraulic radius, can be re-
arranged so that the discharge is found as

1
Q=dn*f?! 4)

where f may be called a »resistance factor, which is for the general situation
L
f2 — J‘ n2A'2R'4/3dx (5)
0

and for the situation of a uniform channel and only small changes in water depth
along the reach

f: nLl/2A'l R"2/3 (6)

From measurements of discharge and difierence in lake levels the resistance
factor can be found from eq. (4). This equation is valid as long as the flow is
turbulent, even if Manning’s formula is not applicable. The resistance factor should
be a function of some average channel depth, but for large relative changes of
water depth over a reach also the difference in water level between two lakes
influences the resistance factor. In the next section it is investigated, when f can
be considered as a unique function of depth, and which errors are involved, when
gradually varied flow computations are replaced by point loss considerations.

For a lake system interconnected with a large water body, whose stage fluc-
tuations are known, and where the lake levels are influenced by the stage of the
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large water body, eqgs. (1) and (4) are used to determine lake levels and flow
between the lakes. First, eq. (4) is used to determine the flow in each channel.
Then, knowing the net inflow to each lake, including runoff from upstream
catchments, an explicit finite difference form of eq. (1) is used to determine
the lake level of each lake one time step forward. The procedure is repeated
until a predetermined time is reached.

Apart from knowing f as a function of depth for each channel the lake sur-
face area as a function of water level above a datum must be known for all the
lakes. Even if the external inflows and the known stage of the large water body
do not change much over a day, a time step of more than one or two hours
should not be used in order to assure numerical stability. It should be stressed
that the model is derived for lake systems having slow water level fluctuations
and should not be used for tidal flows. In the applications of this study the
»large water body» is the Bothnian Bay, whose sea level fluctuations are due to
meteorological conditions, especially changes of the atmospheric pressure.

3. The channel as a point loss of energy

Friction losses and water depth along a channel between two lakes are accu-
rately determined by gradually varied flow computations. This method is used to
theoretically test whether discharge between two lakes can be determined from
only lake levels and a point channel resistance factor. The steady-state condition
problem of a downstream lake (known to be the downstream lake) influencing
an upstream lake is known as the two-lake problem and is treated in general text
books on open channel flow, e.g. HENDERSON (1966).

As an example consider a narrow shallow channel of length 100 m, bottom
width 5 m, side slopes 1:10 and bank slopes 1:50. Manning’s n for the channel is
0.05 and for the banks 0.1. The bottom is assumed to be flat. The depth from
bottom to bank level is only 0.5 m. The discharge between the two lakes was
computed for different average depth in the channel. For each fixed average
depth (mean of up- and downstream levels) computations were performed for
different lake level differences (energy gradient). In the step calculations along
the channel an interval of 0.02 m was used. The results of the computations are
shown in Table 1.

The resistance factor for the channel was computed to decrease with increasing
depth. It does not, except for very shallow water depth, depend on the difference
in water level between the two lakes. Thus, it is an almost unique function of the
average depth in the channel. Even for a depth as low as 0.30 m and bottom



Modelling systems of interconnected lakes 77

Table 1. Theoretically computed resistance factor for a channel 100 m long, bottom width
5 m, side slope 1:10, bank level 0.5 m, bank slope 1:50, Manning’s n of main charmel 0.0s,
of banks 0.1, flat bottom.

average depth lake level diff Q I
(m) (m) m3s)  s/m25
1.54 0.49 20.00 0.035
1.54 0.16 11.43 0.035
0.975 0.35 7.00 0.085
0.975 0.15 4.49 0.086
0.490 0.18 1.00 0.424
0.490 0.06 0.56 0.435
0.300 0.20 0.41 1.09
0.300 0.10 0.28 1.14

width as narrow as 5 m the resistance factor is reduced by less than 5 %, when
the friction slope is doubled.

If the channel is not uniform but for example much narrower close to one lake
than close to the other, most of the friction losses will be restricted to the narrow
part. Computations for such a channel have been carried out. A channel was
assumed to be 10 m wide over 50 m and 5 m wide over the next 50 m. The cross
section was rectangular and Manning’s n was chosen as 0.1. The results of the
computations are summarized in Table 2. The results were not affected by the
direction of the flow.

Also from Table 2 it is seen that the resistance factor is an almost unique
function of the average depth in the channel, computed as the mean of the depth
at the inlet to and the outlet from a channel. For very low depth the resistance

Table 2. Theoretically computed resistance factor for a rectangular channel, 100 m long, width
5—10 m, Manning’s n = 0.1.

average depth lake level diff 0
(m) (m) (m3/sec)  (sec/m25)
1.265 0.53 5.00 0.14
1.265 0.21 3.18 0.14
1.265 0.13 2.50 0.14
0.288 0.32 0.63 0.89

0.228 0.18 0.43 0.97
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factor may vary within 10 % for the same depth but different friction slopes.

In the preceeding examples there was no channel bottom slope. The average
depth was also the average value of the two lake levels above a datum. If the
bed is sloping the difference between the average value of the lake levels and the
average value of the upper and lower lake depths is a constant. Therefore, for a
sloping bed the resistance factor can be related to the average value of the lake
levels.

The proposed model is for flow in either direction in a channel interconnecting
two lakes. The channel bed slope should be very mild and the channel relatively
short. From the test examples given above it is shown that for such conditions
the discharge between two lakes can be determined by a point head loss expression
and that the proportionality factor (the resistance factor) is for each channel a
function of the average value of the up- and downstream lake levels.

4. Determining the resistance factor

From measurements of lake levels and channel discharge the resistance factor,
f, can be determined from eq. (4). Since these measurements can be made only
for a few lake levels, the resistance factor for intermediate depth must be deter-
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Fig. 1. An example of a ffunction (resistance factor versus depth). Measured points are marked
with x.
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mined from interpolation. Non-uniform flow computations using Manning’s
formula is used to perform the interpolation. Cross sections and length of channel
must be known. An example of constructing a resistance factor function is shown
for a 200 m long channel between two lakes in the city of Luled in northern
Sweden. The discharge was measured at three occasions. When the mean lake level
of the up- and downstream lakes was 0.62 m above mean sea level, the resistance
factor f was from eq. (4) determined to 0.034 sec/m?5. When the mean lake level
was 0.37 m f was found to be 0.044, and for the low level 0.04 f was 0.070.
The bottom of the channel is at about —1.3 m. From the three measured values

a resistance factor as a function of water level was constructed as shown in Fig. 1.

For water levels above 0.62 m and below 0.04 m extrapolation was made using
Manning’s equation.

5. Numerical test of the model

To assure stability and accuracy of the numerical expicit scheme a short time
step has to be used. To test how short a time step that is required and how ac-
curately the model performs, results obtained from model computations using
different time steps were compared. Comparison was also made with some
analytical solutions as shown below.

Two identical interconnected lakes, which both are connected to the sea were
considered. The system is sketched in Fig. 2. The friction factor was, for all three
channels, assumed to be a function of depth, proportional to depth "5, the

channel 2

<]
fc
[~
[~
)
£
3}

fixed sea level

Fig. 2. A hypothetical lake system consisting of two identical lakes and three identical channels.
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channel bottoms being at sea level having no slope. The lakes were assumed to
have vertical shores. Initially both lake levels were at 0.20 m above sea level,
while the sea level was kept constant at 0.00 m. As before, it was assumed no
difference in density between the water of the lakes and of the sea. The equation
describing the lake levels is

dh

5 = hOSIAf = hf(c- A~ 2°%) (7)

where 7 = lake level, A = lake area and ¢ = a proportionality constant. The ana-
lytical solution is

0.5
h = gy ctea2"%) ®

where A, = initial lake level.

For a lake area of 1.3 km? and ¢ = 0.2 s/m? in the f-function the results of
the numerical explicit computations were found to follow the analytical solution
even for a time step of 6 hours.

For more complex lake systems it is not possible to find analytical solutions
for the lake levels. Instead lake levels computed by the explicit model for different
time steps were compared. For a system of six lakes with new input data every
day it was found that a time step of 2 hours was sufficient to assure an accuracy
better than 0.01 m when computing lake levels. In this test example the »boundary»
level, i.e. the known level of a large water body, usually the sea, was allowed to
change 0.50 m over a day.

6. Application of the model

The proposed model was tested on a lake system in Luled. There are six lakes
in the lake system. The lake system is sketched in Fig. 3. The lake system is con-
nected to the sea, ie. the Bothnian Bay, having almost fresh water, through a
wide sound in the north and through a very narrow and shallow canal in the
south. The lake level of the large water body, Lake Brindd, in the north closely
follows the sea level. The southern part of Lake Brind6 constitutes a lake of
itself called Lake Sorfjird. Lake Bjorsby has been observed to be the uppermost
lake, but all the lake levels can be below the level of the sea, when high sea water
levels are recorded in the Bothnian Bay. The main external inflow to the southern
lakes is the River Holmsundet. The external inflow to Lake Bjorkskata is from
the urban drainage system of some parts of the city of Luled. During snowmelt,
there is also some external flow to Lake Sinkfjird and Lake Sorfjard. Some
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Fig. 3. The lake system under consideration, the city lakes of Luled, Sweden.

applications of the model to this lake system are described by BENGTSSON (1984).
Cross sections over some parts of the lakes, cross sections of the channels as
well as leveling data of the bottom profile along the channels were available. The

discharge in all the channels between the lakes were measured on at least two
occasions, and from simultaneous measurements of lake levels the resistance factor
was calculated using eq. (4). Manning’s formula was used for interpolation and
extrapolation when estimating f for other lake levels. Friction factors in all the
channels in the system as a function of depth is given in a technical report,
BeEnGTssoN (1980).

As seen from Fig. 3 the lake system is interconnected with the sea. During dry
periods and when there are rather fast sea level fluctuations, water from the Bay
of Bothnia is pressed into the lake system. During snowmelt, when there is large
external inflow into the lake system from upstream catchments, the lake levels
are almost independent of the sea level. The model was calibrated for snowmelt
conditions. For this situation all lake levels were computed very accurately.

The model was tested for an independent period with almost steady-state lake
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Table 3. Comparison between measured and computed conditions in the Lule City Lake System,
May 17-19, 1981.

water level (m) flow (m3/s)
measured computed measured computed
canal sea — Lake Skurholm 0.05 0.00 1.2 6.7
canal Lake Skurholm —
Lake Bjorkskata 0.37 0.38 6.2 6.2
canal Lake Bjorkskata —
Lake Bjorsby — 0.48 4.5 4.7
canal Lake Bjorsby —
Lake Sinkfjird 0.50 0.52 1.8 1.6
canal Lake Sinkfjird —
Lake Brindo —0.23 —0.21 3.0 2.8

levels. The period was mid-May 1981, when the snow had disappeared from open
areas and snowmelt continued only in the forested areas. Observations of sea level,
inflow to Lake Bj6rsby from the River Holmsundet and the flow in a creek enter-
ing Lake Sorfjird were available. The small external inflow to Lake Sinksund was
related to the flow in the creek entering Lake Sorfjird. Since it was difficult to
estimate the input of urban drainage water to the two lower lakes, Lake Bjork-
skata and Lake Skurholm, the simulations were not started until the urban areas
were snowfree, May 11. The baseflow into these two lakes was estimated to be
1.5 and 0.5 m3/sec, respectively. The computed and measured almost steady

state conditions, which prevailed May 17—19 are compared in Table 3. Lake
Bjorsby remained the uppermost lake at a constant level through the whole
period. The water level of Lake Brindd, which is almost a part of the Luled
archipelago, could, however, not be considered to be steady-state.

A test of the performance of the model over a longer period was made by a
continuous simulation for the period Oct. 10—Nov. 9, 1978. The period was dry.
The daily sea levels were known. The only important river inflow, ie. through
the River Holmsundet, was estimated to be constant and equal to 2.0 m3/sec,
which was found from weekly water stage measurements carried out 1.5 km up-
streams Lake Bjorsby. A comparison between observed and computed lake levels
is made in Fig. 4. The agreement seems to be good. However, lake level data
existed only for five occasions during the period. No data was available for the
days, when the sea level dropped to or rose to rather extreme values.

A second test was made on data from a period of 19 days in September 1983.
Daily lake level data and discharge of the river Holmsundet were available. A com-
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Fig. 4. Observed (X for Lake Bjorsby, circle with dot for Lake Bjdrkskata, filled circle for Lake
Skurholm) and computed lake levels Oct./Nov. 1978.
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Fig. §. Observed (X) and computed (solid line) daily water level of Lake Bjérsby, and observed
sea level (broken line), Aug./Sept. 1983.

parison between measured and computed levels of Lake Bjorsbyn is made in Fig. 5.
Lake level data from the lake closest to the sea, Lake Skurholm, was not available.
The agreement between observed and computed lake levels is good except for
September 5. Part of the explanation of the agreement is that the lake system is

a damped system. This is discussed further in the next section.
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1. Regression of lake levels

The water levels of the three uppermost lakes in the Luled city lake system,
i.e. the lakes which usually have the highest lake levels, follow each other rather
closely. The lakes below these lakes, one in each direction, are so small that their
storage capability is negligable. The level of the very large northern lake, Lake
Brindo, closely follows the sea level. Therefore, the laké level of the uppermost
lake, Lake Bjorsby, can be described as a function of previous lake levels of that
lake, external inflow from the upstream catchment and the sea level. Linear
regression results in the regression model

T = p B 4 B ) ©)

where r, = autoregression coefficient, ¥y = regression coefficient for parameter sea
level and r, = regression coefficient for parameter river inflow. Upper indexes
within parenthesis refer to time step. Normalized variables are used.

For a time lag of one day the autoregression coefficient, r,, was found to be
0.80. The regression coefficient for sea level, e, was 0.41. Since only few data
was available on discharge in the main river, the regression coefficient rq could
not be given a value. The autocorrelation and the correlation with the sea level
explain 80 % of the variance of the lake level of the uppermost lake. The high
autocorrelation shows that the system is damped. Therefore, the deterministic
model should be expected to give accurate levels of the uppermost lake, even if
the friction factors are not estimated correctly.

8. Conclusions

A system of interconnected lakes which are also connected to a large water
body of known water level is mathematically treated by a continuity equation
for each lake and a point loss energy equation for each interconnecting channel.
The discharge between two lakes is taken as proportional to the square root of
the difference in lake level between the lakes. The proportionality factor for a
channel is except for extremely shallow depth a unique function of the water
depth.

The proposed mathematical model is suitable for determining lake level fluctua-
tions as a function of external inflows and sea level fluctuations. Comparisons
between computed and measured lake levels show that the model should be
suitable for solving engineering problems.
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NOTATION
The following symbols are used in this paper:

A lake surface area, channel cross section area

B channel width

f oresistance factom (sec/m?2-5)

h lake level, water depth

hy initial lake level

dh  difference in potential energy (lake level) between two lakes

lake number index
L channel length
n Manning’s n
(n) time level
Q  channel discharge
Q,; external inflow to lake no. i
Qi—l,i flow from lake no. (i—1) to no. i
hydraulic radius
r,  autoregression coefficient
regression coefficient for parameter sea level
regression coefficient for parameter river discharge
lake storage
S, friction slope
t time coordinate
x distance coordinate

~.



