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Abstract

The truncated Gutenberg-Richter frequency-magnitude relationship in
conjunction with a Poisson distribution is used to develop an asymptotic
distribution of extreme values. This model is applied to estimate My, and
to estimate the probability of occurrence of earthquakes in Finland, using
for earthquakes occurring throughout the period 1700—1979. The earth-
quake with the greatest magnitude within a ten-year period was used. The
application of maximum likelihood procedure for the parameter estimation
provides M,y = 5.0 £0.1.

1. Introduction

EpsTEIN and LomniTz (1966) have shown that Gumbel’s statistical model 1
of extreme magnitudes (GUMBEL, 1958) can be derived directly from the assump-
tions that earthquakes are generated by a simple Poisson process and they follow
the well-known frequency — magnitude relation:

logN = a — bm D)
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Their paper has recalled the first application of Gumbel’s statistics in seismology
(NorDQUIST, 1945) and has started an »avalanche» of applications of extreme
value methods for earthquake hazard estimation. The extensive lists of references
on this subject can be found in recent papers (e.g. KNOPOFF and KAGAN, 1977;
WEICHERT and MILNE, 1979). Moreover, by deriving the first Gumbel’s distribu-
tion from commonly accepted rules related to earthquake occurrence, EPSTEIN
and LoMmnITz (1966) have established a »kind of physical basis» for applications
of this distribution in earthquake statistics. However, soon after publication of
their paper, a number of authors noticed that the application of the Gutenberg-
Richter frequency-magnitude formula with unbounded argument results in an
unbounded distribution of extremes. Since, from a physical point of view, there
must exist at least an upper limit to the earthquake magnitude (e.g. YEGULALP
and Kvo, 1974; Knororr and KAGAN, 1977), the first Gumbel distribution of
extreme magnitudes has only an approximate character. To avoid this contradition
some authors proposed the so-called third Gumbel distribution for which an upper
limit for the magnitude is introduced. Regardless of the fact that the third Gumbel
distribution has been used in seismological rather successfully, it cannot be derived
from the rules of earthquake occurrence.

In this paper, an alternative distribution of the maximum magnitude value is
proposed, in which an upper limit for the magnitude is assumed. This new distri-
bution is not just another empirical relation (e.g. HoweLL, 1981), but is derived
from the commonly accepted assumptions related to earthquake occurrence.

2. Theoretical background

Let us assume that

(a) the annual number of earthquakes is a Poisson random variable with the
mean A

(b) the earthquake magnitude M is a random variable, distributed according
to a double truncated exponential probability cumulative distribution

F(m) = Pr(M < m) _ A Am) ' 2)
A -4y 7 )
where A, = exp (—BMpp;n ), A, = exp (=M, ), A(m) = exp (—Bm), M, is the
threshold magnitude value, Mmax is the maximum regional magnitude value, and

B is the parameter.
Assumption (a) is certainly acceptable if aftershock magnitudes are eliminated
from the statistics (e.g LomNITZ, 1966; RADU, 1973; POWELL and DUDA, 19?5)
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It is also interesting to note that the Poissonian temporal distribution of events
results from the principle of maximum entropy (TRIBUS, 1969, BERRILL and
Davis, 1980).

As to assumption (b), the truncated exponential frequency — magnitude rela-
tion (2) is well known in seismology. It was proposed by CORNELL and VAN-
MARCKE (1969), and later was obtained by COSENTINO ef al. (1977) who intro-
duced a simple model based on a number of assumptions, among which was the
existence of the maximum regional magnitude value M_, . The same distribution
was obtained by BERRILL and Davis (1980) from the principle of maximum
entropy. Relation (2) agrees well with observed data, both at small magnitudes
where it coincides with the Gutenberg-Richter relation, and at large magnitudes
where it fits the data remarkably well.

From assumptions (a) and (b) it follows that the largest selected in certain of time
earthquake magnitude is distributed according to the following cumulative distri-
bution:

IR L (A(x) —Al)k
= <x)=er 5 A (——>H

Gx)=Pr(X<x)=e }ZO W\ 4,4, | (3)
denoti 7\( ) _Al) = A, and since

o -2k

z A—' = exp(A)

k=0 "*
we obtain the new distribution of extremes as follows (Kuwko, 1982; 1983).

A,—AX) )] ,
G(x) = exp [—)\( A, 4 )] 4)

The resulting cumulative probability distribution (4) is doubly truncated. The
first truncation M, in the formula 4, = exp (—BM,;,) represents the chosen
threshold magnitude. The second truncation M, in the formula A, = exp(—BM,,,,
is an unknown parameter representing the maximum possible magnitude in a given
region. From the definition of 4, and A, it follows that for M, = =, A,~>0and
for M_; =0, A; =1. Thus for 4; =1 and 4, =0, the new derived distribution (4)
becomes:

G(x) = exp[—Aexp(—£x)]. , &)

Since the probability distribution (5) is well known as the first Gumbel distribu-
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tion, the new distribution (4) can be called truncated first Gumbel distribution
of the largest values.

3. Parameters estimation of distribution

In order to estimate the parameters 8 = (8, A\, M, ), the largest earthquake
magnitudes X = (X ,..., Xp,) are selected from NV consecutive time intervals, and
the maximum likelihood method is used. The likelihood function L (8/X) is given
by:

_ N
LO/X)= 1] &), _ (6)
- i=1
where g(x) is the density distribution of the form:
gx) = exp[ln G(x) + In LA ﬁx]. (N
Al _Az
The partial derivatives of InL with respect to § and A are:
M_ A,—(XA)
Olnl _ Tmex2 + i, ®)
aB A,— A, B _
3lnl =_A2—(A) + 1
oA A, -4, N
where N ¥
= i 4
i=1
N AX) X exp(—BX;)
4) = Z N 2 1% )
i=1 i=1
N A(X;)
(XA) = Z Xi T
i=1
Placing olnk 0, we obtain
oA
A,—<4
— _2.__(__) . (%a)
A,—4,

Placing %IE—L = 0 and substituting X by relation (9a), we have
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1 XA—M A,
B = W— +(X0. (9b)

Formulas (92) and (9b) provide two equations which can be used for the
maximum likelihood estimation of § and A. It should be noted that for the M, _—o
relation, (9b) is reduced to the maximum likelihood estimation of the parameter
of Gumbel 1 distribution (KIMBALL, 1946). It should be also noted that equation
(9b) is independent of the parameter A.

The likelihood function (6) decreases monotonically for M, —> <o, leading to
no maximum likelihood estimation for M, . Therefore, the M, estimation can
only be carried out by the introduction of some additional equation. It seems
reasonable to assume that the information about M_, . is provided by maximum
values of the observed magnitude X, , where X = max(X,), = 1,..., V.

Thus, in order to estimate M, , the new constraint should be built established
in such a way that the value of X, plays the leading role. Such a condition can
be established as follows.

By definition, the cumulative distribution function for the largest earthquake

magnitude in /V time intervals is of the form

G*(x GV (x). (10)

max) -

This, in the discussed case

—Ax
exp [—?\N(%@) s M <x_, <M. :
G () = * (an
1 4 Mmax < xmax
and all the characteristics of x_, can be obfained from similar formulas, simply

multiplying X by N. After application of the moment generating function, it was
shown by Kuko (1983) that the expected largest magnitude in one time interval

is
_Bi(zy) —Ei(y)

B = Mo ™ gexp(z,)

, (12)

where z; =\, - 4,2, = \; " 4,, \{ = —N(4, — 4;) and E,(-) denotes an ex-
ponential integral function (ABRAMOWITZ and STEGUN, 1964)

B,@) = [exp(—0) &
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From relation (12), therefore, the expected largest magnitude in V time intervals
is
_ B \WVzy)— B, (Vzy)

E(X nax) = M, ax Bexp(—Nz,) (13)

Introducing the following condition
Xmax = E(Xmax) (14)

into relation (9a) and (9b) we obtain a set of equations determining the maximum
likelihood solution. Since for real seismic data, z, N > 1 and z,N>1, E (2)
can be expressed as (AMBRAMOWITZ and STEGUN, 1964)

E@=Le (_2)22”—12”2_ 1s)
1 z SXP 22+b12 +b2’

where a; = 2.334733, a, = 0.250621, b, = 3.330657 and b, = 1.681534. Formula
(15) is an approximation of the exponential integral function with a maximum
error of 5107 for 1 <z < oo,

The set of equation (9) and (14) can be readily solved by an iterative procedure,
even with the aid of a micro-computer.

4. Standard errors of distribution parameters

A formal estimate of the variance of § = ({’3\, 7A\, Jﬁmax) can be obtained from the
relations describing the variance-covariance matrix of vector 6, estimated by the
maximum likelihood method with constrained parameters (EADIE et al, 1971):

D@)=A' - A'B@BTA By BTA! (16)
where in our case the matrices 4 and B are of the form

_ 3%nL

*’Z ={a1j}_ aeaej s l)] = 1’ 2: 3. (17)
H ’
_ E(X,
B —{b,.j}=—§6f“a"), i=1,2,3 j=1
1

It should be noted that relations (16) and (17) do not indicate how significant
the obtained estimation of the vector 8 is. It is clear that the maximum likelihogd
procedure derived here can give biased 6 parameters (especially M, ), if it is
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applied to the biased X ,, . It is well known that the uncertainly of the maximum
observed magnitude X,,,, can be as high as 0.5 of the magnitude unit when it is
based historical intensity data.

Let us discuss in detail the influence of a »wrongy value of X .. on the esti-
mated M, .

Taking into account that for real seismic data E, (z,N) << E,(z,N), from rela-
tions (13) and (14) we have

X a 1[ 1] dg
T ) — e ()~ | (18
deax B ! S deax )
where
dt — g A, 24, (19
deax AI - A2

and £ = NVz,. Ignoring the influence of uncertainities in the ﬁ and A estimations
after simple algebraic transformations, the approximate standard deviation of
M. becomes

oM, = T,06)0, (20)
where 4 oA
T,(0) = Abs{l + [gefE (8) — 1] ﬁ}_l 21

and o, is the standard deviation of X, - T, ({/9\) can be considered as a »transmi-
tion coefficienty which transmits the uncertainities in X, into the uncertainities
of the M_, estimation.

When 4, << A4, which in practice means that the earthquake cataloque used
covers a sufficiently long period and includes a wide range of magnitudes, the

coefficient Tc(§) takes the following form:
T,(6) = Abs[ge By ()] (22)

An approximate value of the same transmition coefficient can also be obtained
numerically. If after solving equations (9) and (14), Mmax(l)’ Mmax(z) are the
estimations of M, respectively for X . (1) = Xypax — 8 and X oy 2) = Xmax T8

where 8 = a small disturbance (e.g. 0.1), then T,(6) is given approximately by

T,(6) = Abs(M 3y — Mo 1))/28 - (23)
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5. Earthquakes in Finland

Finland is situated on the Precambrian Baltic shield in Fennoscandia. This area
is seismically very peaceful. About 50—70 earthquakes with a magnitude of less
than 6 are registered yearly. These earthquakes represent intraplate seismicity and
have been attributed to Fennoscandian land uplift and to plate-tectonic forces from
the North Atlantic Ridge towards Fennoscandia.

The Finnish earthquake cataloque (PENTTILA, 1982) reports 341 earthquakes
throughout the period 1610—1980. Only one fifth of the events occurred prior
to the 1850s, when systematic collecting of earthquake observations began in
Finland, Prior to the 1950s, when short-period recording started in Fennoscandia,
earthquake data was based on macroseismic observations. From 19511980, the
period when sophisticated instrumentation was used, 113 Finnish earthquakes
were registered. The magnitude estimates for Finnish earthquakes were computed
using macroseismic observations, ie. maximum intensity and radius of macro-
seistnic area. BATH’s method (1953) with a coefficient of attenuation = 4 and
WAHLSTROM and AHJOS’ (1982) macroseismic formula scaled to M;, were
applied and the larger of the two magnitudes was the preferred reading for
a single earthquake. Since 1960 the regional M;-magnitude was computed using
WAHLSTROM and AHJOS’ method (1982). In Finland about 5—10 earthquakes
are registered yearly. The magnitudes of Finnish events have varied between 1.5
and 4.9, nearly 80 % of events had a magnitude of less than 3 and only ten earth-
quakes had a magnitude eciual to or greater than 4.5.

Table 1. Frequency distribution of maximum magnitudes in 10-year intervals for Finland for
the period 1700-1979.

Magnitude Frequence
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Table 2. Estimates of the average return periods for earthquakes in Finland.

M Average return periods (years)
3.0 11.5
3.25 13.0
3.5 15.4
3.75 19.3
4.0 25.7
4.25 37.1
4.5 60.4
4.6 71.9
4.7 107
4.8 162
4.9 310

The proposed procedure for an estimation of the distribution parameters was
applied to earthquakes in Finland throughout the period 1700—1979. The earth-
quake with the greatest magnitude within a ten-year period was used (Table 1).

6. Results

The application of the maximum likelihood procedure with condition (14) to
the data listed in Table 1 gives 1.14 + 0.34, 3.73 + 0.95 and 5.02 £ 0.07 as the
estimates of f + Gg, X5, and ﬂ’/}max * O, (Fig. 1). Since the observed
magnitudes are grouped, they are represented in Fig. 1 by the mean values of
each group and the so-called Weibull plotting position was used (GUMBEL, 1958;
MakiaNic, 1980). Of course, the chosen plotting rule does not play any role in
the estimation of the parameters.

The transmition coefficient calculated according to formula (20) is equal to
1.13. The same coefficient calculated numerically (eg. 23) is equal to 1.30. Thus
for the standard deviation of the maximum observed magnitude o, = 0.1, with
an accuracy to the first decimal digit, all three methods give the same value of
8Mmax = 0.1. It is interesting to note that M_, = 5.0 = 0.1 found here is equal

max

to the M, estimated by the Gumbel third distribution (AHros ef al., 1984).
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50 Mmax=5.02
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Fig. 1. Distribution of largest magnitudes in 10-year intervals for Finland
between 1700 and 1979.
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7. Conclusions

1. Introduction of a concept of maximum regional magnitude M__  to derive
the distribution of the largest earthquake magnitudes provides a modified form
of the first Gumbel distribution. For M ..~ <, the new distribution tends
asymptotically to the first Gumbel distribution. It should be emphasized that
the new proposed distribution is derived from the commonly accepted assump-
tions and constraints related to earthquake occurrence.

2. The described procedure permits the calculation of maximum likelihood
estimates of the parameters of extreme magnitudes distribution. Considering the
importance of M,,,, values for seismic hazard analyses, the additional formulas
are given describing uncertainties of their estimates. Moreover, a slight modifi-
cation of condition (14) provides an estimation of M, based on the largest
known historical earthquakes observed in a given area. This can be performed
by substituting X, ,, by the largest known magnitude and N by the number

of time intervals used (Kiyko, 1984).
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3. The application of the described procedure to the largest magnitudes in ten-
year intervals in Finland for the period 1700 — 1979 provides M, = 5.0 £ 0.1.
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