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Abstract

It is suggested that averaging the result of the predictor step and the
twice-iterated corrector step in the Euler-backward time integration scheme
reduces truncation errors and yields strong selective damping of high frequency
waves with a small phase error. The proposed scheme allows a 70 % longer
time step than in the original Euler-backward scheme, which makes it as
economical as the original scheme. "

1. Introduction

Nonlinear normal mode initialization has proved to be a very effective method
of initialization. Its implementation may be complicated, especially in limited area
fine-mesh models, however, and so dynamic initialization with a selectively
damping time-integration scheme is still a valid proposal, at least as a first aid to
controlling noise when starting primitive equation integrations.

The Euler-backward (Matsuno) scheme has traditionally been used for this pur-
pose (HALTINER and WILLIAMSON, 1980). Recently, more effective filters and
modified time-integration schemes have been described, e.g. in DEY (1979) and
Masupa (1981). This paper documents a further modification of the damping
scheme suggested in SAvyARvI (1981). Its advantages include stronger damping
of high-frequency (gravity) waves, better preservation of low-frequency (me-
teorological) waves, a very small phase error without discontinuities and the
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longer time step allowed. The method needs three evaluations of time derivatives
per time step (instead of two as in the Matsuno scheme or one as in the non-
damping leapfrog scheme), but with the longer time step allowed the efficiency
of the scheme is equal to that of the original Matsuno scheme.

No numerical tests have been performed. Only error analysis and linear analysis
with an oscillation equation leading to the scheme are described. Being a two-level
scheme, the method is easily adapted to the adjustment part in split-explicit time
integrations such as those of GApD (1978).

2. Error analysis

Consider a differential equation
@D _

with a given (initial) value y, = y(t,). The Euler-backward method for the nu-
merical integration of this equation is the simplest of the predictor-corrector
methods. First a prediction is made with a forward difference (the Euler-step):

Vp =V =Vn T AL f(D,) €y
The value y,,, obtained can be corrected by using it in a backward step:
Ve =V =t AL FOD,, @)

the combined scheme being called the Matsuno scheme. The iteration can be con-
tinued.

Both steps introduce a relatively large truncation error. The result from the
predictor step is Y=yt R, , where y is the correct value and R the truncation
error of the Euler method. Usmg the Taylor expansion, R, =3 At2 r"(t,), where
by Sty Sty Similarly, after applying the corrector, the result is yc y+R,
where R is the truncation error of the backward step (2); R, = — —At2 r )
t, St, < < ty+1- The difference y, — y, = R, — R is thus a measure of the error
and we can write

R
RC ——/jé_I/)?- (yp _yc) (3)

This can be used to give an approximation for the error R,. Assuming that
£'(t,) = f"(t,) we can write
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Ry Sanfi,)
and, from Eq. (3),
_ 1
Rc - i(yp —y(;)

This error estimate can now be subtracted from the corrector result giving

1 1
yn+1 zyci_RC:yC+—2_(yp_yc)=5(yp+yc) (4)

The final value is thus the average of the forward and backward steps. In the next
section this approach is applied to a wave equation to find out its stability proper-
ties.

3. Linear oscillation equation

Wave motion can be studied with the simple oscillation equation

oy _ _.
3 = ikcy (%)
where y is any variable, ¢ the time, k the wavenumber and ¢ the wave phase speed.

Applying the Euler method to this equation gives
Vp =Y, —iayn ©)

and correcting this by a backward step gives

)1 = —i
n+t Y, n ay f/] (7)
where n At is the time level, At the time step and a = kc At

Introducing a wave solution y, = exp(—iAn), where 4 is complex, to the dif-
ference equations (6) and (7) gives

el =1—a>—ia

for this Euler-backward (Matsuno) scheme. The amplitude response of a scheme
is given by AR=|e"4|= (Re? +Im?)"/? and the phase angle response normalized
by the analytic solution — a is given by PR = — “Ltan™ (Im/Re).
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For the Matsuno scheme these are

(EB) AR= (1 —a®+ a*)\?
PR = —a'tan (—a/(1 —a?))

indicating stability in the region 0 <a < 1 where AR < 1. If we now apply the
averaging of the predictor and corrector steps the result is

- 1 . 1
id _ L1 a2 — 1 g — =2
e —2(1 ig+1—ig—a*)=1-ia 5 4a
The amplitude response is AR =[e*|= 1 + -}Iczz
Thus the scheme is unstable, AR > 1, for all « > 0, and it is not useful for
simulating wavelike phenomena. However, if another iteration with the backward
corrector scheme is made, as suggested in SAVARVI (1981),

h:, =h, —iah! (8)

n+l n+l

after substituting the wave solution to Egs. (6), (7) and (8) the amplitude and
phase responses become:

(EB2) AR = (1—a*—a* + a%V?
PR = —g'tan (—a)
This scheme (EB2) is stable for 0 < a < 1.27.

Averaging the result of the predictor step and the second iteration with the
corrector gives

d4 =1 —%a2 —i(a—%f)

The amplitude and phase responses are

12
(EB24) AR = (1 - % a* + % aé)

PR = —a'tan™ (—a)

The amplitude responses of the schemes £B, EB2 and EB2A4 are shown in Fig. 1
as a function of a. All these schemes provide damping for short waves. The averaged
scheme EB2A is the most scale selective and removes waves kc At = 1.2 completely.
It also allows a time step that may be 70 % longer than in the Matsuno scheme
EB. The slower (meteorological) waves are preserved rather well in the averaged
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Fig. 1. Amplitude response of the Euler-backward scheme (£B), twicely iterated EB scheme
(EB2) and averaged, twicely iterated EB scheme (EB24), versus a = kc At

scheme. This can be seen from Table 1, which lists the amplitude response of the
three schemes for low values of a.

Table 1. Amplitude response as a function of a.

Scheme EB EB2 EB2A4
a= 0.1 .99504 .99494 .99969
0.2 98061 .97901 99941
0.3 95818 95007 .99705
0.4 .93038 90471 .99087
0.5 .90139 .83853 97828
0.6 .87727 .74636 95628

The phase speed error of the new scheme EB24 is the same as that of EB2,
which was shown in SAviyArRvi (1981) (Fig. 2) to be smaller than other schemes
compared. The numerical phase speed in the scheme EB24 is continuous and
only very weakly dispersive throughout the stable range of wavelengths. Thus the
scheme should preserve wave packet structure and physical energy dispersion
properties even in a more complicated context.
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4. Conclusion

By analysing the truncation errors of the Buler-backward time integration
scheme, it was shown that averaging the results of the two steps may give a more
accurate result if the second derivative of the field varies slowly. Applying this
principle to the oscillation equation it was shown further that the method is
unstable with only one application of the corrector step but that, with two
iterations of the backward corrector, it yields a stable scheme that is strongly
but selectively damping with a very small phase speed error. The method thus
needs three evaluations of the derivative per time step compared with two in the
Matsuno scheme, but as the time step may be 70 % longer than in the Matsuno
scheme the economy of the two schemes is similar.

The time integration method proposed consists of a forward step stored tem-
porarily, two iterations with a backward step and averaging of the final backward
and temporary forward step results. As only two time levels (n+1 and ) are
involved the scheme is self-starting and there is no computational mode. Its
strongly selective filtering properties and easy implementation may be advantageous
in dynamic initialization or in the gravity wave adjustment part in split explicit
time integrations.
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