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Abstract

A solution of the Navier-Stokes equations has been derived assuming
that the space available is horizontally unlimited and that the water depth
is constant. As initial condition, it is assumed that the current velocity is
given as a function of depth. As boundary condition, the wind stress is
given as a function of time at the upper surface, and at the bottom the no-
slip condition is valid. It is further assumed that the free surface has a
constant inclination and that the vertical eddy viscosity is also constant.
To check the theory, an optimation procedure was developed to find the
best values for the eddy viscosity, the wind stress factor and the surface
tilting including the direction of the tilting. Some cases were run through
with variable success. :

1. Introduction

Wind-driven currents have been theoretically dealt with in numerous papers. In
Exmans work (EKMAN, [3]) a constant eddy viscosity is assumed. With an infinite
depth and steady wind the surface current assumes an angle of #/4 to the right
(on the northern hemisphere) of the wind direction, and downward from the sur-
face the current velocity follows the well known hodograph, the Ekman spiral.
ExMAN formulated also the corresponding transient state problem, which was
solved by FREDHOLM giving time dependent spirals which approached steady
state when time went on. These steady state values for different depths form the
customary Ekman spiral.
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Subsequent scientists have mostly treated cases with steady wind and variable
vertical eddy viscosity. FIELDSTAD [4] proposed that the eddy viscosity be propor-
tional to the 3/4 power of the distance from the bottom while THoMAs [11] and
WiTTEN and THOMAS [12] assumed the eddy viscosity to be linearly dependent
from the depth. Their hodographs were somewhat more realistic than the corre-
sponding Ekman spirals. MURRAY [8] applied a constant and a power-formed eddy
viscosity to near shore currents with some success. MADSEN [7], again, made a
rather profound theoretical approach to the problem by assuming that the vertical
eddy viscosity is proportional to the distance from the free surface. He found that
in transient state the spiral formed was comprized into a much smaller angle than
in the FREDHOLMs case and the deviation of the current direction from the wind
direction in the drift current case was some 8°. Similar observations have been
made in natural conditions.

In addition to the theoretical or partly theoretical works there are some works
performed by computers, see e.g. FORISTALL [5] and SvENSsoN [10]. Because
this method is more flexible, it is easier to take into account more demanding
conditions. Therefore it is understandable that the results too are more or less in
accordance with natural conditions.

The purpose of this paper is to derive current velocities assumed to be horizontal
as a function of depth and time-dependent wind when the vertical eddy viscosity
is assumed to be constant. The current field is initially given as a function of depth.
The upper surface may be inclined. To compare the theoretical and observed cur-
rents an optimation procedure was used.

2. The problem

The current field in a sea or lake obeys the Navier-Stokes equations which in
complex form read as follows

2
g—tw+ifw=—f<g+v%z%}. 2.1

Here w = w(%, z) =u + iv is the complex velocity of the current assumed to be (nearly)

horizontal, i is the imaginary unit, f = 2 wsiny is the Coriolis parameter, k =« + ik y

is the constant complex tilting of the free surface and v is a constant turbulent kin-

ematic viscosity. Furthermore, the water density p is taken to be constant. Although

not explicitly stated in the basic statements of the problem, the tilting of the surface

may be caused by some object, a coast line or some other obstacle not too near to

the regions considered. The initial and boundary conditions are
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w(0,2) = w,(2), (2.22)
w(t,—h)=0, (2.2b)

dw(t,0) _7(t)

32 o 2.2¢)

The initial condition tells that at = 0 the velocity is given as a function of z. The
first boundary condition puts the current speed at the bottom = 0. The depth % is
assumed to be constant. The second boundary condition gives a relationship between
the vertical derivative of the current velocity at the surface w(z,0), the surface stress
7 =7(f), which is a given function of time, the density p and the kinematic viscosity .

3. The mathematical solution of the problem

The solution is obtained using Laplace transformation (CHURCHILL [2])
F=F(,z)= [exp(—st) f(t,z)dt = L{f(t, 2)}.
0

The transformed differential equation together with the transformations of the
boundary conditions yield

V%Z—ZV w(s+if)w=—w0(z)+5S5, (3.1a)
W(s, —h)=0, (3.1b)
dW(s,0)_ , f 7())
dz =L lpl) j, (3.1(:)
where
W=W(, z)=L{w(t, 2)}. (3.2)

General solution of the problem. To obtain the general solution of the problem,
the general solution of the homogeneous equation will be added to the singular one
of the inhomogeneous equation. The general solution of the linear homogeneous
differential equation

2

V((iiz—?/—(s+if)W=0 (3.3)

is



158 S. Uusitalo
Wy(s,z) = ,C{'—r[%)}'if{w;(t, 2)}, (3.4a)

where the denotations
1 exp(r(z + b)) —exp(—r(z + h))

* _ * —
We(s,2) = Liwglt, )} = r exp (rh) + exp(—rh) ’ (3.4b)
rt=(s +if)lv (3.4¢)
have been used. The general solution of the linear problem is thus
fr—t . )
wy(t, z) = ({ _(pv—) w;(t ,z)dt'. (3.5)

Still the solution of (3.4b) has to be found. Using rules of operational calculus
(CHUrcHILL [2]), it can be shown that Eq. (3.4a) is equivalent to

L{(Uyexp(ift, V) wi(t,Iv, 2)} = £ (5), (3.6a)
_ 1 exp((z + h)g)—exp(—(z + h)q)

16 =5 exp(hq) + exp(—hq) ’ (3.6b)

L, =vt, (3.6¢)

q*=s. (3.6d)

Using the formula for the inverse Laplace transformation it ensues

Q+gi
/vy exp(ift,/v) w;'(tl, z)=(1/2 "i)g“»nlafﬁ. exp(st;) f(s) ds, 3.7
-Bi
where o > 0 and the integrand in the right member is analytic in the half plane
R(s) > «. The integration is thus performed in a complex plane.

Treatment of the transformation integral. Calculation of the integral in Eq. (3.7)
takes place using the Cauchy residue theorem. The path of integration follows a
closed curve T" avoiding singular points of the integrand. The actual integration
starts at the point A of the Fig. 3.1 and then follows the line segments I';, T,,

Iy, Iy, I's back to A. The singularities of the integrand are poles situated at the
zeroes of the divisor. Yet, at the origin, there is no singularity. The poles are thus
situated at

s =—n?(n + 1/2)*h%. (n=0,1,2,.) (3.8)

n

The residues belonging to the poles are found by a limiting procedure.
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Fig. 3.1. Curve in the complex plane to be used to evaluate the integral in (3.7).

p(s,) = li_)m (s—s,)exp(st,) f(5) ) (3.9a)
= (2/h) exp(—7*(n+1/2)t,/h*) cos((nz/h) (n + 1/2)). (3.9b)
(n=0,1,2,3,..)

1t may be noted that there are no singularities in the right half plane R(s) > 0.
According to the Cauchy residue theorem we then find

(1/27i) [exp(st)) f()ds = 3 p(sy), (3.10)
r n
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where the summation includes all residues of poles falling inside the curve I'. The
integral on the left hand side of (3.10) can be integrated piecewise. It is readily
shown that integrals along the segments I';, T, T, T, are of the form O(|s|"/2).

(1/27i) [exp(st;) F(s)ds =0(IsI'Y?).  (j=1,2,4,5) (3.11)
¥

When the integrals are subtracted from (3.10), it is found that

a+ig

[ exp(st) f(s)ds= 2 p(s,)+O(sIM?). (3.12)
0—ig n

The general solution of the problem is then found by using Egs. (3.5), (3.6¢), (3.7),
(39v),(3.12) to be

w,(t,z) = ftZT(t— t"Y/(oh) S exp(—ift'— vt (n+ 1/2)2/h?) cos(nz(n-+1/2)/R)d¢’ .
° o (3.13)

Singular solution of the problem. In the Eq. (3.1a) we have two inhomogeneous
therms w,(z) and kg/s. We treat them separately and try thus the solving of equations

d2w, .

A — @ +Hif) W =—wy(2), (3.14a)
d*w, .

V42 —(s+if) W, = —«kg/s, (3.14b)

where the subscripts refer to different solutions. To deal with the first equation, we
assume that the initial velocity field be given as a Fourier series

wy(z) =w(0,2) = i a, exp(2 minz/h). (3.15)
It is thus
a, = (1/hn) }) w,(z) exp(—2minz/h) dz. (3.16)
-h

It is further assumed that W, is the Laplace transform of w,
W, =W (s,2) = L{w,(t,2)} 3.17)

and that it can be expanded as Fourier series
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w1, 2) = Ni a,,exp(2minz/h) (3.18)

with a Laplace transform

W= 3> A expQminz/h). (3.19)
neses

It is readily seen that Eq. (3.14) is satisfied by
Ay, = a, /(s +if + 4n*nv/h?). (3.20)

Inverse Laplace transformation of Eq. (3.19) with (3.20) and (3.16) gives as the
particular solution of the initial value problem

- 0
wi(t,2)=(1/h) 3 exp(—(if + 4n*n®p/h*)t) [ wy(z") exp(2min(z—2')/h)dz'.

== ~h (3.21)
It is readily seen that Eq. (3.14b) has a solution

W, =—kg(s(s +if))*. (3.22)
The inverse Laplace transformation of (3.22) is
w,(t,2) =— (kg/f)iexp(—ift) —1). (3:23)

The solution of the whole problem is then obtained by adding the different solutions
in (3.14), (3.21), (323)

w(t,2) = w,(t,2) + w(t,2) + w, (1, 2). (3.24)

4. Data

The data used in this work were furnished by Dr. M. LEPPARANTA at the Institute
of Marine Research and were originally planned to settle some questions concerning
ice and its movements, c.f. LEPPARANTA [6]. Occasionally, the data were judged to
be suitable for the work at hand as well. They were collected by current meters
lowered stepwise downwards through holes in certain ice floes to measure current
velocities at different depths. The positions of the ice floes were determined by the
navigational instruments of R/V Aranda, who was stationary anchored to the ice
floe, where measurements were performed, Fig. 4.1. Lowering of the instrument was
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Fig. 4.1. Contours of the Bothnian Bay are shown. In the southern part of it there is a path
of R/V Aranda showing her drift along with an ice floe to the southwest during one week
in the first half of April, 1977.

carried at 1 m intervals for the 14 uppermost depths, then at 2 m intervals for depth
up to 20 m and further down at 5 m intervals at times even as far down as 40 m.
From these data and the floe velocities absolute current velocities were figured out.
Wind data were also collected from meters in a mast installed nearby.

5. Numerical considerations

A computer programme was developed for the Burroughs 6700 computer of the
University of Helsinki. In the first phase, the formula (3.24) above was used to cal-
culate horizontal currents. As initial current field, measured values as a function of
depth were given. Shear values at the upper surface were determined from two
uppermost current measurements, because, the sea was covered by ice in regions
where measurements were executed. From these values stress values were drawn by
multiplying with the constant eddy viscosity. Tilting was taken as zero in this first
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phase. The results showed that the stress values used were far too large. This
may be caused by very small viscosity values near the surface. As a remedy

an additional factor k for the viscosity was introduced. The results showed also
other strange features. It was thought that the reason could be the shore lines
some distance apart. Another reason could be the ice ridges, especially the keels
below the lower ice surface. As a remedy to this, it was thought, could be the
tilting of the upper surface. Because the locations and forms of the keels were
not specified by measurements, they could not be directly taken into account,
although they certainly have some influence on currents. The equations contained

in this way a number of undetermined quantities. Simple trial and error method
seemed to be futile. Therefore it was decided to write a programme, which optimized
the unsettled parameters, the eddy kinematic viscosity, the surface shear multiplier,
the tilting angle of the surface and the direction of the tilting. The object then was
to minimize the sum S below to find the best fit with the calculated current and the
observed one.

S=2(u—uy)* + @)%, (5.1)

Here (u, v) means the velocity calculated and (i, v,) the observed one at chosen
depths. The data, as used to the problem at hand, had a defect, namely they covered
at one and the same site a rather restricted time spell namely some few hours only.
To recover this mishaps, some calculations were performed with extended time interval
and the optimized data. Only the stress at the upper surface was determined in this
case from the measured wind data using the well known square law (NEUMANN —
PiERrsON, [9]).

The numerical integration in (3.13) was performed by Gaussian quadrature
method (ABRAMOVITZ — STEGUN, [1]). The reason, why Simpson rule was
abandonned lies in the sum expression of Eq. (3.13), which does not converge at
t'=0.

6. Results

After the formula (3.13) was completed, a test for its correctness was carried out
using constant wind blowing on a sea surface initially at rest. The result was a spiral
of Fredholm type, ExMAN [3], Fig. 6.1. It was also possible to calculate cases with
variable wind influencing on a sea surface initially at rest. In this numerical experi-
ment the wind used is represented in Fig. 6.2 in a hodograph form. The results were
similar to Figs. 6.3a, b, c. (The curves shown here have been calculated later on). In
a) the surface current and in b) and c) the currents in the depths of 10.5 m and 21 m
are plotted. The total depth was 42 m. Hereafter the programme was modified to
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0 u
Fig. 6.1. The hodograph of the picture shows the development of surface current velocities
determined according to the formula (3.13), when the current starts at rest and constant
wind blows over the surface. It is assumed that the coasts and the bottom are so far apart
that their influence on the velocities is not noticeable.

include the optimation procedure, the stress determination from shear values in the
surface layers as an alternative to the wind stress calculation, the influence of the
current values at start and that of the tilting. Results of different series of measure-
ments are to be seen in Figs. 6.4a, b, ¢, d.

7. Discussion

In Fig. 6.3a we see the current start from zero and grow in the same direction as
the wind blows at the time Oh, Fig. 6.2. The wind speed grows then and its direction
changes anticlockwise. The wind attains a first maximum at about 7...8 h. The current
velocity grows slightly wiggling and its direction is at the maximum moment of the
wind about 43° to the right from the wind direction. Then the wind subsides to a
minimum at about 12 h and grows retaining its direction almost unchanged until
18 h. The current vector hodograph accomplishes here a loop and continues then to
turn only slightly to the right. The maximum deviation of the current direction from
the wind direction to the right is about 75°. All these phenomena are well in agree-
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Fig. 6.2. Natural wind velocities (in a form of a hodograph) which were used in a numerical
experiment to calculate the current shown in Figs. 6.3a,b,c.

ment with the constant viscosity assumption, EKMAN [3]. The subsurface currents
are represented in Figs. 6.3b, c. The change of the general direction and reduction
in speed are obvious. Also this phenomenon is in agreement with the simple theory
of constant viscosity.

It seems thus obvious that the Eq. (3.13) can be used to compute currents in case of
constant viscosity and constant depth when the wind is variable.

In Figs. 6.4a,b, c, d there are original observations shown as fulldrawn lines and
optimated calculations plotted as dashed lines. The purpose of the optimation was
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Figs. 6.3a, b, c. Calculation of the development of currents initially at rest in different depths
according to the formula (3.13): a) at the surface, b) 10.5 m below the surface and c) 21 m
below the surface, when the total depth is 42 m and the wind behaviour is that depicted in
Fig. 6.2. The kinematic eddy viscosity was taken to be v = 0.0194 m2s 1. The upper surface
was assumed to be level.

to find some parameters to obtain the best fit between the observations and the
calculations and at the same time check in what extend this can be done. The
parameters optimized were the kinematic eddy viscosity, the factor by which the
real surface stress was multiplied, the tilting of the sea surface and the direction of
the horizontal component of the surface.

The optimation gave as the kinematic eddy viscosity in all the four cases astonish-
ingly the same value 0.0194 m?s™! (with four decimal places). This agrees very well
with the known value 0.02 m2s°! for the Gulf of Bothnia. The surface shear factor
k had in the four cases (in the given order) the values0.39, 0.20, 0.36, 0.18. The
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corresponding stresses calculated from the formula
T=kpvo|wl/oz

were 0.17,0.31,0.28, 0.43 kgm™'s"2, whereas those calculated from windstress ac-
cording to the formula
7=0.002 kgm™> - w?

gave 0.35,1.29,0.17,0.30 kgm™! 52 respectively. The agreement is doubtful atleast.
It can be observed at the first glance that the real shears near the upper surface in the
different cases are very different. Therefore itisunderstandable that the k-values too
differ markedly. On the other hand, the sea areas in question were ice covered. Therefore
the traction of wind on the sea surface is indirect. Indeed, it is known that the ice
floes attain the speed due in a very short time, i.e. their sluggishness need not be
taken into account in general, LEPPARANTA [6]. Besides, the factor in the stress
formula may be slightly different from that used for the open sea.

Because the tilting in this case may not be of any especial interest, it is outlined
here in broad lines only. The tilting may be compared with the expression

i=flwl/g.

Using proper observed values, this formula gives i = 1.8 - 1076, whereas the largest
calculated value was 0.14 - 1078, This may mean that neighter the coast lines nor
the keels of the ice ridges exert any appreciable influence on the flows measured.

The general shapes of the optimated velocities agree in broad outlines, but they
are far from good agreement. One possible reason to this may be that factors other
than the wind stress may have interfered, e.g. current pulses (turbulence, say) from
other regions may have occasionally entered the region in question, at the irregular
shapes of the current hodographs suggest. One circumstance that certainly has an
influence on the results is the fact that the basic measurements are not simultaneous,
but currents in each horizontal level have been measured separately. This means that
the current determinations in any vertical section have been completed in some 20
to 30 minutes.

Because it is well known that the viscosity depend on surrounding factors, it is
understandable that the constant viscosity model can not effectively cope with
natural conditions.
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Figs. 6.4a,b,c,d. In these figures the original current hodographs are drawn in full lines and
the hodographs determined using optimated values in dashed lines. The observations and the
calculations correspond to a time 60 min after the initial values were introduced in the
figure a). The corresponding times for the figures b), c) and d) are 100 min, 35 min and
125 min respectively.
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