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Abstract

A new, iterative method for the solution of the differential equations of
slow, viscous, incompressible flow is presented. The procedure can be applied
in connection with numerical methods. The equations needed in the finite
element method are derived. Based on these equations a computer program
dealing with plane and axi-symmetric cases has been developed. The program
has been applied to the determination of movements and stresses in the
earth’s crust and mantle under the loading due to erosion and sedimentation.
Some results from these calculations are presented.

1. Introduction

KAITERA([2], [3], [4], [S] has presented the hypothesis that the changes resulting
from erosion and sedimentation have a considerable influence on the movements
and stresses in the earth’s crust and upper mantle. To give support to this theory,
NiskANEN and KUTVONEN [2],[6], [7] have done calculations and obtained interest-
ing results. In these calculations the crust and mantle have been assumed to behave
like an incompressible viscous fluid. As the flow is very slow, the inertia effects could
be omitted in the formulation of the problem. The applicability of the Fourier-series
solution employed was restricted, however, to relatively simple geometry, which was
composed of horizontal layers of constant thickness and viscosity.

In this paper a solution process based on an iteration scheme combined with the
finite element method is presented. By this procedure-problems with arbitrary geo-
metry, loading and viscosity distributions can be solved. It can be applied to study the
changes to previous results due to more realistic erosion-sedimentation and viscosity
distributions and due to consideration [9] the spherical form of the earth. Some
results determined by a computer program developed for plane and axi-symmetric
cases are presented.
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2. Equations of creeping flow

The governing equations of steady state, slow (creeping) flow of viscous, in-
compressible fluid [1] are given in this chapter. Rectangular right-handed Cartesian
co-ordinates x, y, z and matrix notation are employed.

The strain rates of the flow are defined by means of the derivatives of the
components v, v, and p, of the velocity vector ¥ from expressions

{d} = [a] {»} ¢
where

d, [a/ox 0 0 |

d, 0 a/dy 0 )

), 1l o 0 3faz P

{d} = &, pPI=] , oz afay | {v}—{vy} : ()

d, 3oz 0 dfdx Vz

dxy —a/By 0/ox 0 i

The state of stress is defined by a column vector {o}, composed of the stress
components, by means of which the components T, Ty and T, of stress vector
T acting on any surface are obtained from equations

{T}=1[n]" {0} 3)
where
—nx 0 0] o,
T 0 n, 0 o,
(T} = Txl _ 0 0 n, _lo;
R R R B @
T z y yz
z n, 0O n, Trx
_ny n, 0_ Txy

. >
and where n,, n, and n, are the components of an outer unit normal vector n to
the surface.

In creeping flow the inertia forces can be omitted and stresses {0} must hence

satisfy the following equations of equilibrium

¥y

[817{o} + {F} = {0} (5)

where
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Fx
{F}=1F, ®)
(£,

is a column vector composed of the components of the body force vector F_) per
unit volume.

The velocity components {y} have further to satisfy the continuity equation
which is in case of incompressible flow

(v} =0 | ™)
where
o/ox
{v} =10y . (®)
0/0z

When equation (7) is expressed in terms of the strain rates, the result
d=0 )

is obtained for the rate of dilatation d =d, +d, + d,.

The relations between stresses and strain rates are linear for Newtonian fluids
and can be expressed by equations

0, =2ud, +Ad —p
oy, =2,udy+)\d—p
0, =2ud, +Ad —p (10)
Tyz = I“Ldyz
Tox = Md;y
Tey = Hdyy,
or in matrix form by
{o} =[C1{d} —{p} (1)

in which
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Dutr A A0

0 0 r
2u+tXN A 0 0 0 p
2u+n 0 0 0 p
C = s =
[C] L 0 0 {r} 0 12)
Symmetric u 0 0

In equations (10) (or (12)) u is called the coefficient of viscosity, X the bulk
viscosity and p the static pressure.

For incompressible fluids the value of the bulk viscosity A has no effect on the
relationship between stresses and strain rates because those terms in equations (10)
having A as a multiplier disappear due to continuity equation (9). Consequently the
constitutive law in incompressible flow is usually presented in the form

g, =2ud, —-p

o, = 2udy —-p

T2k (13)
Tyz = kdy,

Tox = Mgy

Tey = udxy s

which can be also interpreted as equation (10) with A\ equal to zero. Here, how-
ever, the constitutive law (11) (A # 0) is employed because the value of A proves
to have a considerable influence on the rate of convergence of the iterative solution
method.

The solution for creeping flow has to satisfy equation (11), relation between
strain rates and velocity components (1), equation of equilibrium (5) and equation
of continuity (7). Substituting expression (1) for strain rates into equation (11)
and then substituting the expression for stress components obtained into equations
of equilibrium (5) we obtain it in terms of velocity components {v} and pressure
p as follows:

[8171C1 (3] {v} — 817 {p} +{F} ={0}. (14)
Equation (14) together with continuity equation
{viT{r}=0 ()

forms a system of four linear partial differential equations for the solution of the

unknown functions v, v, v, and p.
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The boundary conditions of the problem are given as known components of
velocity or as known components of surface traction vector i.e.

{vr} ={v} on surface S,, (15)
{T}={T}  on surface Sp. (16)

Surface S, is that portion of the boundary of the domain where the velocity com-

ponents v, v, and v, are known. Surface S is that portion where the traction
components T, T, and T, are known. The boundary conditions can naturally
be given also in a mixed form for instance so that on some area the known quan-
tities are for example v, I_‘y and '.7_"2 Substituting expression (1) for the strain rates
into equation (11) and the expression for the stress components obtained into
equation (3), we have the components of the stress vector {7’} in equation (16)

in terms of the basic unknowns { v} and p. The boundary conditions for the

system of partial differential equations (14) and (7) are now in their final form

{v} ={v} on surface S, (15)
[(M1T[C] [01{v} — [n]T{p} ={T} on surface S. amn

3. Solution of the equations of creeping flow by iteration

The solution of the system of partial differential equations (14) and (7) subject
to boundary conditions (15) and (17) is not possible in practical situations without
use of discrete numerical methods. The discretization of the equations leads to a
very large system of simultaneous linear algebraic equations, the solution of which
demands much computer space.

Here an iterative solution scheme is introduced by which over half of the com-
puter space needed in the solution of the system of the equations can be saved,
thus making solution of problems having over double size possible within the same
computer space. In this method the pressure p = p(x, », z) is determined iteratively
so that the velocity components found from equations (14) finally satisfy the
equation of continuity (9) with sufficient accuracy.

In incompressible flow a relation

p=—(0,+0,+0,)/3 (18)

for the static pressure is obtained by employing equations (10) and the equation
of continuity (9). By employing equation (18), a new value for the pressure p™*!
can be evaluated from the stress components o7, 0; and o} calculated on the nth



152 Jukka Aalto and Eero-Matti Salonen

iteration. Substituting their expressions from equations (10), we obtain a new
value for the pressure

Pt =p" - (%# + 7\) d". (19)

Writing d” further in terms of velocity components {v}”", we obtain the final
equations used in the iteration process

[P171C1 (8] {»3" — [0 {p}" + {F} = {0} (20)
(o} = (7} on surface S, @1)
[n171C1[8] {v}" ~[n]" {p}" = {T}  on surface Sy, (22)
= —(2 ) oy, (23)
{p}"*=p"1 110 0 0]7. (24)

Taking a suitable starting value for p, for which we can take

p'=0={p}!' ={0}, (25)

we can solve velocity components {v}" from equations (20), (21) and (22) for
iterations n = 1, 2, 3, ... and calculate after each iteration new values for p""l and
{p}**! from equations (23) and (24), until the results have converged sufficiently.

Some conclusions can be drawn on the effect of constant A on the necessary
number of iterations. From equations (10), there are found on the first iteration
(p! = 0) the relationship

Gi+0;+ozl=(2u+37\)dl, (26)

from which there are found
a)lc +gl + 0;
—_x Ty "z

1
" = 21432 @n

To obtain already on first iteration values of velocity componenis {v}l, that would
be as near as possible to the values of incompressible flow, the rate of dilatation

d" calculated from {v}! should be as small as possible. On the basis of equation
(27), the constant A should be taken as high as possible. However, very high value
for A cannot be used, as numerical inaccuracies in the solution of equations (20),
(21) and (22) appear. To find a safe upper limit for A, we have taken recourse to
the analogy between a Newtonian fluid and an elastic solid. Equations (20), (21)
and (22) are completely analogous on the first iteration with the differential equa-
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tions for the displacements of an isotropic linear elastic solid. In this analogy, to

the coefficient of viscosity u, there corresponds the shear modulus, and to the

bulk viscosity A, there corresponds the so called Lamé’s constant. From numerical
solutions of the differential equations for displacements of an isotropic linear elastic
solid, there are obtained experience of the effect of Lameé’s constant on the accuracy
of the solutions. From these results a safe value for A can be taken as

A= 254..100p (28)

depending on the problem and on the accuracy of the computer.

4. Discretization of the equations by the finite element method

Equations (20) subject to boundary conditions (21) and (22) can be solved
numerically using for example the finite difference or the finite element method.
Because of its generality, the finite element method is used here.

The principles of the finite element method are explained thoroughly for
example in [10]. Shortly the method is as follows. The domain under considera-
tion is divided into sub-domains called elements, on the boundaries of which a
certain number (total number = k) of so called nodal points or nodes are chosen.
The velocity components at the nodes v, Vs Va1r VxareoVxpo Vypo Vyp a1 the
unknown quantities of the discretized problem compared with the unknown
functions v, (x, y, 2), v, (x, . 2), v,(x 3, 2).

The displacement distribution is approximated in the form

{r} =M1 {r} 29)
where
{V} = [vxl’ vyl’ Va1 Vi sVxpeo 1)yk' vzk]T' (30)

The elements of the [{] matrix are known functions of x, y and z, called shape
functions. They are defined element by element and can obtain values differing -
from zero each one only in elements having certain node as a common point. On
the basis of formula (29), there follows from equations (1) and (11)

{d} = [al[¥1{V}, @31)
{o} =[CTIal[¥1{V}—{pr}. (32)

Formulae (31) and (32) determine the approximation for strain rates and stresses.
It is obvious that stresses (32) cannot any more satisfy the equations of equilibrium
(5) and boundary conditions (16) exactly with any value of vector {V}. However,
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equations (5) and (16) can be satisfied approximately for example by applying the
Galerkin process [10]. When applying Galerkin’s process to equation (5), a system
of equations

g[w]T([a]”{o}+{F})dV= {0}, (33)
or
;[w]T[a]T{o}deL g[w]T{F}de {0} (34)

is formed which is satisfied, if {o} satisfies the equation of equilibrium (5) in the
domain V under consideration. Integration by parts of the first term in (34) gives

JU1 1" {o}ds — [q@1 WD {o3dv + [ 9] {F}dV = {0}, (35)
and taking into account relation (3), we obtain
[ @D {o}dv = [ W1 {F}av + [[v]"{T}ds. (36)

Substituting approximation (32) for {o} into equation (36) and taking into account
that on surface S;. of S boundary condition (16) is valid, we obtain further

;([a]wDT[Cmal W dv- {v}
= Ij/[xp]T{F}dV+Sj [w]T{T}ds+§ (W17 {T}ds + j( vy {prdv. (37
T v

The unknowns in the system of linear equations represented by matrix equation
(37) are the velocity components v,, Vyp z1: VarrPuks Vyror Yok of vector {V}
and the non-zero components of vector f {T}dS However, boundary con-
ditions (15) on surface S, have not yet be‘én taken into account. Additional
equations are obtained by equating the nodal velocity components at nodes on
surface S to the known values at corresponding points from the boundary con-
ditions. Closer examination shows that the non-zero terms in vector fS [W1T{r}ds
appear exactly in those equations in (37) which can be replaced by identities con-
cerning the given velocity components. Taking this into account, the system of
equations (37) can be changed into form

[K]{V}={R} +A{R} (38)
where notation

= ;([a][w])T[C]([a][w]) v, (39)
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{R}= II/[\I/]T{F}dVJrSI' (w17 {T}ds, (40)
T
A{R} = If/([a][\l/])T{p}dV (41)

is employed and where the terms va[\I/]T{T}dS have been dropped. In (38) it
must now be understood that certain rows are to be replaced with the given
velocity identities. The system of linear, algebraic equations (38) forms a substitute
for the system of linear partial differential equations (20) subjected to boundary
conditions (21) and (22), from which the vector of nodal velocities {¥'}" can be
determined when pressure p” is known.

From equation (23), there follows for the pressure p*! the expression

= —(2un) (e 3 “2)

The iteration process is now as follows:
Start p! = 0= {p}' = {0}.

1. Compute A{R}" = i([a] DT {p}"dv

2. Solve {V}" from equation
[K1{V}" = {R}"
in which {R}" = {R}+ A{R}"
3. Compute
n+l _ _n __ 2 T n
p" =p N (v} VIS
and form {p}*"* =p""[111000}"

for the next iteration.

Steps 1 to 3 are gone through for n = 1, 2, 3,... until the results have converged
sufficiently.

5. Numerical results

Some results obtained by the finite element method are given below. The element
type used is the isoparametric, curved, eight node quadrilateral element which has
proved to be very efficient [10]. The integrations needed in the formulae are done
numerically by Gaussian integration. The calculations have been executed in UNIVAC
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Figure 1. (2) Fluid squeezed between two rigid plates.
(b) Finite element mesh for the shaded area.
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Figure 2. (a) Distribution of static pressure at three sections.
(b) Distribu tion of horizontal velocity at two sections.

1108 computer using a FORTRAN V program for plane and axi-Ssymmetric cases
developed by the writers.

The first example is concerned with a fluid squeezed between two rigid plates in
plane flow case, figure 1a. The relative velocity between the plates is v4. The results
from the finite element analysis are compared with the known analytical solution
[8]. The boundary conditions are naturally taken to be the same in both the solution
methods. From symmetry reasons the area analyzed is the shaded region for which
the finite element mesh (18 elements, 73 nodes) shown in figure 1b is used. The
results for static pressure p at sections x = 0-176h, x = 1-65h and x = 2-97h,
and the results for horizontal velocity v, at sections x = 1-53h and x =3 h are
compared with the analytical solution. As seen from figure 2, the results are very
accurate.

In connection with this example the effect of constant A on the rate of con-
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vergence was also studied. This was done by comparing the change of velocities to
the total velocities by employing as a measure the quantity

o = Ty — vy
("
Iteration was stopped when e” was under 10 or when the number of iterations

n was over 30. The number of iterations and the execution time are given in table 1
for some values of ratio A/u

3
>

3

43)

Table 1. Effect of ratio A/u on the number of iterations and on the execution time.

Mu No. of Execution Comments
iterations time secs.

0 30 25.30 No convergence

1 30 25.76 No convergence
5 23 23.83
10 16 17.76
50 7 12.79
100 6 12.47
500 4 10.84
1000 4 11.26

It can be seen that the use of a value of X differing from zero is necessary for con-
vergence in this case. Thus, if we had used in the derivation of equations (20) to
(24) the conventional constitutive law (13) instead of law (10), the method of
solution had not succeeded in connection with this example.

The second example deals with the movements of the earth’s crust and mantle
under the loading ("the sea pressure’ [2] to [5]) Ag resulting from erosion and
sedimentation in assumed plane flow case. As shown in figure 3a, loading Ag was
assumed to be distributed uniformly along the ocean and continent and to vary
linearly at the coastal area. It is assumed that there are four separate horizontal
layers the lowest one being rigid. The viscosities of the other layers from up to
down are u = 1022, =10 and n= 10?3 g/cms. The element mesh used is shown
in figure 3b (70 elements, 245 nodes). The results for horizontal velocity v, at
some vertical sections is shown in figure 3c and the distribution of vertical velocity
v, at some horizontal sections is shown in figure 3d. KUTVONEN [4] has calculated
a very similar example using a Fourier-series solution. The distribution of loading
Aq was, however, due to the solution method a little wavy (see figure 3a), and
the viscosity of the lowest layer had a finite value u = 10%° g/cms. Results by the
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Figure 3. (a) Geometry and distribution of loading and viscosity.
(b) Finite element mesh used.
(c) Distribution of horizontal velocity.
(d) Distribution of vertical velocity.
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Figure 4. (a) Some data of the problem.
\ (b) Finite element mesh used.
(c) Distribution of tangential velocity.
(d) Distribu tion of vertical velocity.
(e) Distribution of principal stresses.
(f) Distribution of maximum shear stress.
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finite element method have been compared with the results by the series solution
[4] in figures 3¢ and 3d. Small differencies, resulting evidently partly from the
differencies in load distributions, can be detected.

The third example is concerned with the determination of movements and
stresses in the earth’s crust and mantle taking into account the spherical shape of
the earth, figure 4a. A more realistic load distribution due to erosion and sedimenta-
tion has also been tried to achieve in this example. Likewise, the stratification with
respect to viscosity differs below the ocean and continent. The problem has been
analysed as an axi-symmetric case with the axis of rotation horizontal in figure 4a.
From figure 4a the rest of the important data of the problem can also be found.
The element mesh (120 elements, 413 nodes) is shown in figure 4b. In figures 4c
and 4d the distribution of tangential and radial velocities v, and v, can be seen.
The distribution of the principal stresses o, and ¢_;, and the maximum shear

stress 7. are presented in figures 4e and 4f.
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Notations
[C] stress-strain rate matrix, (11)
d rate of dilatation
dy, d,, d,,
dy,,d,, dy,  strain rates
{_9} column vector of strain rates, (2)
F body force vector per unit volume
F,F,F, body force components
{F} column vector of body force components, (6)
k total number of nodes
[K] coefficient matrix in the system of equations (38), (39)
n superscript referring to iteration number
7t unit normal vector to a surface
Ny, Ny, 1, components of unit normal vector
[n] matrix of the components of the unit normal vector, (4)
p static pressure
{R} column vector in the system of equations (38) due to external

forces, (40)
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A{R} column vector in the system of equations (38) due to static
pressure, (41)

S surface of the domain under consideration

St portion of the surface over which the traction components are
known

S, portion of the surface over which the velocity components are
known

T superscript referring to transpose of a matrix

7_“> stress vector

T, T, T, components of stress vector

{T} column vector of the components of the stress vector, (4)

_x, Ty, 7_"2 given traction components

{T} column vector of traction components

v velocity vector

Ve Uy ¥, velocity components

{r} column vector of velocity components, (2)

Ver Yy ¥, known velocity components

{r} column vector of the known velocity components

V domain under consideration

{v} vector of nodal velocity components, (30)

X,z rectangular Cartesian co-ordinates

[o] matrix of partial differential operators, (2)

{v} column vector of partial differential operators, (8)

A bulk viscosity

M coefficient of viscosity

Oy Oy Oy,

Tyz Toxr Txy stress components

{0} column vector of stress components, (4)

[v] matrix of shape functions, (29)
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