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Abstract

The average power spectrum of N data sections containing one and the
same weak signal superposed on different realisations of background noise
is compared to the average power spectrum of M realisations of the pure
noise. Assuming independence of the power spectrum estimates an exact
test is given for the presence of a signal at some given frequency. The power
of the test is obtained from the noncentral F-distribution and its tabulated
for selected M, N and signal-to-noise ratios ». Also, the values of r yielding
the test power 0.9 for given M and N are tabulated. If the spectra are
locally white, the exact test may be applied also to spectra smoothed over
frequency. For non-white spectra smoothed over frequency an approximate
F-test and its approximate power are given.

1. Introduction

Estimation of power spectrum is a commonly used method in analysis of geo-
physical observations. However, when the signal intended for analysis rises from
a noise background, the contribution of the undesired noise to the computed
spectrum should be estimated prior to drawing conclusions.

A seemingly good signal-to-noise ratio at the dominant frequency of the signal
does not guarantee that signal power is present in the whole frequency range on
which conclusions will be based.

In the following discussion it will be assumed that the noise is a stationary, random
Gaussian process with zero mean, uncorrelated with the signal. Also, it is assumed
that there exists records of noise with no signal present. This is the case of analysis
of seismic signals, since they are transient, and since pure noise (which is approxi-
mately stationary within the time scale of earthquake signals) is usually recorded
prior to the signal onset.
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Computation of the noise power spectrum, in addition to the signal power
spectrum, and comparison of the two spectra, gives a possibility to estimate the
probability of the spectral power noticed in some frequency band being caused
entirely by noise.

2. Correction for noise power

. We write Z () for the power spectrum of a record section which is supposed to
contain a transient signal together with noise (f = frequency). The Fourier transform
of the signal, which is taken to be deterministic, is s(f), and its power spectrum is
Is(f)|?. We denote by Y (f) the estimate of the power spectrum of the noise,
obtainable from a record section preceding the signal. For noise with the properties
defined above, the power estimate Y (f) is distributed as cfxg where c; is an unknown
constant [1].

An estimate of the signal power is obtained by the subtraction

P(N=Z(NH—Y({), 1)
The expected value of P(f) is according to LAcoss and KUSTER [4]
E(P)=|s? (2

where, for brevity, the implicit dependence on frequency is not written out. Thus
the estimate (1) of the signal power contains no bias due to noise. The stability of
the estimate has been discussed by Lacoss and KUSTER [4], and can be computed
if the signal-to-noise ratio |s|?/E(Y) is known. If we have only one observation for
Z and Y, the stability is very low.

3. Testing whether signal power is present

The stability of the estimates of Z and Y can be improved by ensemble averaging
and frequency smoothing [1]. Considering ensemble averaging, if there are available
N parallel channels recording the same signal but different realizations of noise, as is
the case with a seismic array station, the signal and noise section stabilities can be
improved by averaging over the power spectra computed for different channels.

Because several noise sections can be analyzed from each channel, the number M
of noise sections can be larger than V. The noise is here assumed to be an ergodic
process. The averages are '
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Table 1. Critical values for the ratio Z/Y in the test for presence of a signal. Upper values:
a=0.05, lower values &= 0.01.
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N 1 2 3 4 10 30 100
M
1 19.0 19.2 19.3 194 19.5 19.5 19.5
99.0 99.2 99.3 99.4 99.4 99.5 99.5
2 6.94 6.39 6.16 6.04 5.80 5.69 5.65
18.0 16.0 15.2 14.8 14.0 13.7 13.5
3 5.14 4.53 4.28 4.15 3.87 3.74 3.69
10.9 9.15 8.47 8.10 7.40 7.06 6.93
4 4.46 3.84 3.58 3.44 3.15 3.01 2.95
8.65 7.01 6.37 6.03 5.36 5.03 4.91
10 3.49 2.87 2.69 2.45 2.12 1.95 1.88
5.85 4.43 3.87 3.56 2.94 2.61 2.48
30 3.15 2.53 2.25 2.10 1.75 1.53 1.44
4.98 3.65 3.12 2.82 2.20 1.84 1.68
100 3.04 2.42 2.14 1.98 1.62 1.39 1.26
4.71 341 2.89 2.60 1.97 1.58 1.39

Because the Y s are independent random variables their sum MY is distributed
as CfXZM- The Z_’s also are mutually independent, and independent of the ¥ s;in
case |s[2 =0, NZ is distributed as CinN' In the ratio Z/Y the unknown c,:s cancel

out and the quotient is F,y ) distributed. If Is|> >0, Z and Z]Y tend to be larger
than in the case |s|? =0, and the test becomes:
Reject the null hypothesis |s|> = 0 if Z/Y > Fyy 5y (@)

Table 1 gives the values of F, 5 (@) for some M, N and for @ =0.05,0.01.

Example: If M =10,N=4 and a = 0.05 we reject |s|? =0 if Z]Y >245.Ifin
fact |s|? = 0, we then erroneously reject it in 5 % of all cases. It may be noted that
the normal approximation used in ref. [5] leads to an incorrect critical value of Z/Y.

If the noise spectrum is at least locally white, M and N can be increased by a
factor K by averaging the power over K neighbouring frequencies as well as over the
ensemble. In case of a non-white noise spectrum a similar increase in the number of
degrees of freedom of the distribution of Y is not achieved.
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Let the total average be

M=

1
Yy zl?k ) Y(fk)

where every Y (f;) is the ensemble average of M independent observations. Then
for every k, MY (f) is distributed as ¢, ng where ¢, is an unknown constant
depending on k. Hence MY, is of the form

& 2
Z Cx Xom
k=1

which is not of ¢ x2-type unless all ¢ are equal. However, a standard procedure in
such cases [2] is to approximate the distribution by a ¢x? distribution with mean
and variance equal to those of MY, .

According to the properties of the x? distribution, a suitable unbiased estimate
of D?Y(f,) is

Y2(f)
M+1

and this gives as estimate for the number of degrees of freedom

X

fyy =2 -stability =2 - kz

> Y(f)
k=1

M+ 1).

For NZ, (based on IV observations) the corresponding estimate for the number of
degrees of freedom is, under the null hypothesis,

N
I3 ZMfY

and it follows that under the null hypothesis the ratio Z, /Y, is distributed approxi-
N
mately as F ( 7 I, fY). Again, the critical region leading to rejection of the null

hypothesis is determined according to the F' distribution.
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4. Power of the test

By the power of a test we mean, as usual, the probability of rejecting the null
hypothesis when it is false. The argument on which this probability depends is in
our case the signal-to-noise ratio

_Is)?

TEW)

For the case N =1, let s + y represent the Fourier transform of a record section
containing a signal together with noise. Let y be the Fourier transform of the noise
in the section.

Let

Sty =sp +yg+ils +yp.
thus

=ls+p % = (g +y)* + (5 +y)*
Yy and yg are independent and N (0, ¢) distributed (c = E(Y)/2). We can write

z=c(Z o 28) 4 (2 2)7]

which shows that Z is distributed as cx'2 215l je i.e. as a noncentral x? with non-
centrality parameter |s|?/c = 2r. For generalN NZ has the distribution csz IN:
and then Z/Y has the noncentral F distribution F 2N,2M 2N L1 makes it possnble
to find the power of the test used here. In Table 2 values of its power are given for
some N, M and fixed r, In Table 3 the values of r yielding the test power 0.9 are
given for some N, M.

Example: If M =10, N = 4 and « = 0.05 as in the previous example, Table 2
shows that signals with signal-to-noise ratios 2,4 and 8 are detected by our test with
probabilities .65, .97 and >.99, respectively. Suppose we use @ = 0.01 (we wrongly
reject |s|2 =0in only 1 % of all cases). If we want to detect a signal withr =1.5
with a probability > 0.9, Table 3 shows that

for N =15 we must have M > 100
for N = 30 we must have M > about 25

For a fixed M + NV the highest power is seen to occur when  is slightly less than M.
For finding the approximate power of our test in the case of frequency smoothing
over a non-white spectrum, suppose we know the expected noise power EY( i) =ex
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Table 2. Power of the test forr =2, 4, 8. Upper values: @ = 0.05, lower values: @ = 0.01.

N=1 N=2 N=4
1=2 4 8 =2 4 8 =2 4 8
M=3 .26 48 79 32 .58 .88 .35 66 93
.07 19 42 .10 .24 .53 12 .29 .63
M=10 33 65 93 .50 .83 .99 65 97  >.99
15 36 15 .24 Y 93 .30 78 >.99
M=30 .39 .10 .95 57 89 >.99 17 98 >.99
.18 45 .83 32 .70 98 .53 97 >.99

based on ref. [6].

Table 3. Values of r yielding the power 0.9 for the test. Upper values: @ = 0.05, lower values:
a=0.01.

N 3 4 6 10 15 30 100
M

3 7.6 7.1 6.5 6.2 6.0 5.8 5.6
15.6 14.6 13.6 12.9 12.3 11.8 113

4 6.1 5.6 5.1 4.6 4.4 4.1 4.0
11.6 9.9 9.1 8.2 7.9 7.5 7.2

6 4.9 43 3.7 3.3 3.1 2.8 2.6
7.6 6.9 6.1 54 5.0 4.1 43

10 4.0 34 2.9 2.5 22 1.9 1.7
6.4 5.2 4.4 3.6 3.2 2.9 2.6

15 3.6 3.1 2.5 2.1 1.8 1.5 1.3
5.1 43 3.5 2.9 2.5 2.1 1.8
30 3.2 2.7 2.2 1.7 14 1.1 .83
4.4 3.7 2.9 23 1.9 1.4 1.2
100 3.0 2.5 1.9 13 1.1 .82 51

4.0 34 26 1.9 1.5 1.1 .68

based on ref. [3]
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(say) and signal-to-noise ratio r, = sﬁ /ey for all appearing frequencies f . Then,
approximating

K
> MY(f) by XA
k=1 y

in the usual way, we get

1 k=1
fy =2M ”
2, &
K=1
and similarly £ :11,,;_\, )',

K
Equating the expected values of ¥ NZ(f;) and a tentative approximation to it
k=1 :

of form c'x'f? we get

13

i.e., a weighted average of signal-to-noise ratios r, . To find the power of the test use
Iy f; and r' as £, f, and r before.
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