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Abstract

The purpose of this work has been first to derive the equations
for the infinitesimal oscillations of a thermoviscoelastic, self-
gravitating, spherically symmetric and rotating earth model
on the basis of the axiomatic treatment of modern continuum
mechanics. Secondly, the synthetic seismograms for the model
in question have been obtained by systematic use of the funda-
mental matrices Y (r) and Z(r) together with a perturbation
technique.

Introduction

For a historical background as well as for a foundation for the present
work the reader is referred to the following research works from the
field of free and forced oscillations and tidal deformations of certain
earth models:

Ravreier [30], Love [22] and [23], TaxevcHr [37] and PEKERIS
et. al. [28] have studied the free oscillations of an elastic, radially inhomo-
geneous, isotropic and selfgravitating sphere (with hydrostatic initial
state of stress). For modifications of this model to take into account
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transversely isotropic symmetry see Backus [5]. Forced oscillations
of this model have been studied by ALTERMAN ef. al. [2] and by Sarro
[33]. As shown by Backus and GILBERT [3], PERERIS ef. al. [29], MAc-
Donarp and Ness [24], GiLBerT and Backus [12], and DanLen [9],
rotation causes splitting of the spectrum. SAASTAMOINEN [31] and [32]
has presented two further modifications to take account of viscoelastic
and thermal effects. For tidal oscillations of the model see for example
TArEUCHI [37] and TArEUCHT and Sarro [38].

The purpose of the present work is to give a systematic treatment
of the free and forced oscillations of a thermoviscoelastic (rate type),
isotropic or transversely isotropic, spherically symmetric and rotating
earth model in addition to handling in some detail the tidal deformations
of this model. The more detailed structure of the different chapters may
be outlined as follows:

The chapter on Notations presents first some principles from the
analysis of scalar, vector and tensor valued fields (represented in abstract
and in coordinate forms respectively). The second part of this chapter
reviews some concepts which are somehow connected with the deforma-
tion.

In the chapter on Basic principles of thermomechanics the principles
of thermodynamics have been used to find to first order infinitesimals the
Laplace transformed equations of motion of a thermoviscoelastic, self-
gravitating, inhomogeneous and rotating body. The dynamic field
quantities are allowed to suffer jump discontinuities on a finite number
of internal surfaces and the initial state of stress has been assumed to be
hydrostatic, although according to the recent satellite observations
the equilibrium state of the stress deviates slightly from the hydrostatic
one.

In the chapter dealing with Equations of motion in a rolaling coordinate
system a scalar decomposition of the different field quantities, combined
with the expansion into series with respect to the spherical surface
harmonics, leads to two coupled systems of ordinary differential equa-
tions, which with certain boundary conditions determine the coefficients
with respect to the spherical surface harmonies (for spheroidal and toroidal
oscillations as well as for tidal deformations).

In the chapter entitled Solution of the equations of motion the adjoint
boundary value problem, together with a technique of contour integra-
tion, has been used to produce a residue representation for the solutions
(i.e. to determine the coefficients with respect to the spherical surface
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harmonics). The rotation has been included to first order perturbation
with respect to the parameter & = —;)—0 , where w is the angular velocity
of the rotation and p° is an eigenvalue of the unperturbed problem.
After solving the coefficients with respect to the surface harmonies,
the synthetic seismograms are readily obtained. At the end of this
chapter two numerical methods for the determination of the fundamental
matrices have been studied in some detail.

At the end of the work three appendices have been added to support
the main part of the study. Appendiz A handles in a more detailed
way the constitutive theory giving to first order infinitesimals the Laplace
transformed constitutive relations between different field quantities.
In Appendiz B the Laplace transformed equation of energy has
been derived to first order infinitesimals. Finally Appendiz C presents
some facts about formal solution of boundary value problems, which
have been expressed by a system of ordinary differential equations
with certain boundary conditions (both in matrix form).

Notations

In this chapter a few short notions about scalar, vector and tensor
valued fields will be presented together with certain concepts aboub
deformation.

Scalars: Scalars are identified with the elements of the space of real
numbers 9t .

Scalar fields are regarded as mappings form the Euclidean space
E (or some other space, e.g. H in (15)) into 9. In other words

p=pX);XEH, peER.

The norm of an arbitrary element y € R is defined as the absolute

value of y, or
vl = l9f - (1)

Vectors: Following Norn [26] vectors are defined as the translation

space V of the ordinary three dimensional Euclidean space & . Thus
two elements x and y define a vector vE€V Dby

V=y—X. (2)

According to (2) vectors may be regarded as mappings from &

into V. Ie. there is a transformation ¥ from F into V, such that
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v="V(x) .

More general fields are obtained if instead of E the domain of
U is in another function space (e.g. H in (15)).

The scalar product in ¥V is defined as a certain bilinear transfor-
mation [-,-] from the product space VXV into . (For product
spaces and many other questions on modern analysis the reader is
referred to the book by Diruponnt [10]). Thus, given two arbitrary
elements u and v, the scalar product between them is

[u,vi=u-v. (3)
The norm of an element v €V is

IVly = [v, vI"* = (v v)*" (4)
In E the distance between two elements x and y is defined by
the Euclidean norm

X —¥lz=((x—y) x—y)"*. (5)

Tensors: Tensors are regarded as equivalent to the elements of the
space of linear transformations L(V; V) from ¥V into V. Thus
vEYV and TEL(V;V) define an element u by

u = T[v].
Tensor fields are defined as mappings from other function spaces
into L(V; V).
The scalar product between two elements A and B € L(V; V)
is given by the bilinear transformation

[A,B]=#(AB"); % A,BeL(V;T) (6)

from IL(V; V)X L(V;V) into R. In (6) #r means the trace of the
quantity inside the brackets and B means the transpose of B.
Higher order tensors are defined as spaces of certain linear trans-
formations. For example, third order tensors are elements of
I(L(V;V);V) (e linear transformations from IL(V;V) into V).

Coordinate representations of vecltors: For many questions explicit coordi-
nate representations are necessary (e.g. to obtain scalar decompositions
of different field quantities).

It is easy to see that the three vectors defined by

ei=6ix;eiEV (7)
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form a basein V. In (7) 0 means the partial derivative with respect
to the coordinate =«'.
The dual base {e/} of {e;} is obtained from the relations
e e = o, (8)

where 6] are the mixed components of the metric tensor I € IL(V ; V).
The base systems {e;} and {e’} give for a vector v €V the two

coordinate representations
v = v'e, = vl . (9)

With the aid of (8) the coordinates v and w; in (9) are seen to be
related by the expressions

v, =g and o' = gy, , (10)
where the covariant and contravariant components of the metric tensor
I are respectively

g; —¢€-¢ and g7 =1¢'"¢. (11)

Coordinate representations of tensors: It is seen that each of the tensor
products

{¢@e},{¢®e},{e;,®e'}, and {e ® ¢} (12)
span  L(V; V). Consequently an arbitrary tensor T € L(V;V)

has the four different representations
T=T;6Qe¢="TeR®e="TeQ¢="T6QRe,. (13)

From (13) relations similar to (10) may be obtained between the
different components of T.
Coordinate forms of the metric tensor I are given by

I=g,6Qe=06®e=4¢eQe, (14)
where the components have been given by (8) and (11).
[Remark: As is usual in the theory of tensors, repeated indices, one upper
and one lower, imply summation over that index: from one to three

in the case of Roman letters and from one to two in the case of Greek
letters.]

Calculus of scalar, vector and tensor fields: Later we shall require some
facts about the calculus of scalar, vector and tensor valued fields defined
on product spaces of the form,
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= L(V;; Vt) X 9t X Vt . (15)

In (15) the letter ¢ shows that the elements of the respective spaces
depend upon the real parameter ¢ (time). In what follows the fields
p,q and T (all defined on H and having their ranges in &, V,
and IL(V.;V,) respectively) may serve as examples of the class of
fields in question. Accordingly

¢:¢(G>ﬂ5h)
q = {(e,?,h) (16)
T="1T(,?,h).

Since only the time derivative of y and the Taylor series (to the
first order in H) of », q and T around the element

H=(,%,0)€H (17

]

are needed in what follows, the treatment here has been restricted to

those concepts.
The time derivative of p takes on the form,

= 0p[e] + 2,99 + 3, H[H], (18)

where the dot means the time devivative, o,9[ ] € L(L(V,;V,); R.),
0y% € L(N,; ) and dyp[ - 1€ L(V,; N) .
The Taylor series in question may be shown to have the forms

2 =??) + 3c1i)[0 — 1]+ 3,.9'9?)(19‘ — %) + 3,.?[11] + O
¢;1+ 3&[0 — I+ %Q(ﬁ — ) + ahQ[h] + < (19)
'§‘+ aT[G— I]+3T(ﬁ—ﬁo)+3T[h]+<>

In (19) the »subscript» zero refers to the element H (defined in (17) ).

In the linear transformations in (19): 0

ac’!}[ . ] € L(L(V; H Vt) H 8}1) s 60’(/3 S L(ER; H éﬁl) N 8,11;)[ . ] € L(Vg H 8{1)
0 0 0

04[ 1€ LUV 5 V)5 Vi) s 0,0 €L(Nes Vi), 0,1 -1€L(V.; V)
0 0 0

O 1€ LUV V) ; L(Ve; V), 9,T € L(R,; L(V.; V) and
0 0
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The symbol (> in (19) means the higher than first order terms in .

Because the explicit expressions for the functionals 9.9 [e] and
2,9[h] are needed later, it is relevant to point out that the repre-
sentation theorems for linear fumctionals in L(V,; V)) and in 7V,
reveal that

d.ple] = tr (9 pe”) (20)
and

ah’;?)[h] = ah";‘" “h, (21)
respectively.
On space derivation (gradient) of coordinate representations: From (7)
it is evident that the base vectors {e;} are field quantities in general

(mappings from F into V). Therefore, under space derivation of the
coordinate representations (i.e. application of the operator
ax = e/ 8,- (22)
to the coordinate forms of vector and tensor fields), it is necessary to
have expressions for the partial derivatives of the base vectors with
respect to the coordinates a7 .
Since {0;e;} € V', there is a system of real numbers {7} € R
(the Christoffel symbols) such that
8jei =5 .Z—},:ek . (23)
As to the partial derivatives of the dual set {e'}, it is soon verified
using (8) and (23) that

06" = — The. (24)

After these preliminaries the application of (22) on vector and tensor

fields, taking into account (23) and (24), gives the required space deriva-
tives. For example, the gradient of the vector field v € V is of the form

V=16 Q® e =1v,6®e. (25)
For many details about space derivation see SEpOowW [36].

On the spherical coordinate system: Because of the spherical symmetry
of the problem, it is necessary to present some characteristics of the
differential geometry in this coordinate system. For a more complete
treatment see the excellent work by Backus [5].
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The position vector x is given by
X =17X", (26)
where 7 is the radius vector and x° is the unit vector,
X0 X0 1. (27)

For a complete base system two other linearly independent vectors
(besides x°) are needed. For this purpose a surface coordinate set
{w*} will be fixed (consequently the triplet (r, ul,4?) determines
every point of H). Accordingly (as in (7)), the additional basis {a,},
which spans the unit sphere S;, is given by

a, = 0,x°, (28)

where 9, means the partial derivative with respect to the coordinate u®.
The dual basis {af} of {a,} is obtained from

al- Ay = 65: ’ (29)

where 6¢ are the mixed components of the surface metric tensor.
The operator (22) in the spherical coordinate system takes the form

e

a
0, = X9, + — 0, (30)

In principally the same way as above ((23) and (24)) the partial
derivatives {d,a,} and {9,a%} are shown to satisfy the relations

08, = I}, — a5 X° (31)

24

and

%

where {a,;} are the covariant components of the surface metric tensor
and {I%,} are the surface Christoffel symbols.

a* =— — Fg‘yay — 05x°, (32)

Some concepts on finite deformation: Under this title we consider some
kinematical quantities which one way or another are connected with
the time dependent transformation

X = x(X,1), (33)

called deformation (motion). Equation (33) is understood as a mapping
from the Euclidean space & (material, Lagrangean) into the time
dependent Euclidean space K, (spatial, Eulerian).
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Based on E and E, two vector and tensor spaces are constructed.
These are called ¥V and L (V ; V) respectively in the case of the mate-
rial system K, and V., and I(V,; V) respectively in the case of
the spatial system Z,.

The velocity v in V. is equivalent to the material time derivative
of x, or in other words

VZX:EEE. (34)

The acceleration a is the material time derivative of v. Thus

. ov
aZV:—gl;—{—LVEV,, (35)

where L is the velocity gradient given by
L =0, veELV.;V). (36)
The deformation gradient F is defined by
F = 04X. (37)

With the aid of the polar decomposition of (37) (see for example
TruEsDELL and NoLL [40])

F =RU, (38)

where R is orthogonal (RR” = I) and U is symmetric (U = 0.
The right Cauchy-Green tensor € is given by

C=FF=1". (39)

The relation
L = FF (40)
between the velocity gradient and the deformation gradient may easily
be verified by taking the material time derivative of (37) and using (36).
Infinitesimal theory: Since the main concern of the present paper is with
the infinitesimal relations, the deformation (33) will be replaced by
x=X+4u. (41)
The deformation gradient, by (37) and (41), now takes the form
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F=I+H, (42)
where the displacement gradient

The infinitesimal form of the velocity gradient is obtained from
(40) with the aid of (42) as follows:

L=H+4(>. (44)

As to €, it follows from (39) and (42) that
C—1+42E+(>, (45)

where E is the material strain tensor given by
E=1}H+ H. (46)

Spatial representations: Many times it is necessary to change the domain
of the field quantities from & into Z, (i.e. from material into spatial
systems). As a result of such changes certain material field quantities
will be given here in their spatial forms (to first order infinitesimal
quantities in the respective spaces).

Acceleration (35) takes the form (47) after use of (41) and (44):

a=du+ ). (47)

The spatial and material displacement gradients (h and H) are
related by

h=HF1, (48)
from which, using (42), it follows that
h—H4+ (). (49)
By (46) and (48) the spatial strain tensor e takes the form
e =E+ (). (50)

At the end of the discussion on deformation the domains of the fields
o(X), q(X) and T(X) will be changed from E into F, (from material
into spatial representation). Thus X will be solved from (41), after
which the subsequent Taylor series expansions around x result in

o(X) = o(x) —u- 9,0(x) + (> (51)
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q(X) = q(x) — 9 quj + <> (62)
T(X) = T(x) — 8, T(u] + <> . ~ (53)

Laplace transformation: The transformation pair

fva)

() (p) = / e P () (D)t (54)

0

0@ = [e () (i (55)

271
T

will be used in this paper to replace the time dependent field quantities
by the parameter (p) dependent ones. In (55) [ means the usual
Le

Laplace contour integral (about the Laplace transformation see e.g.
Birm [6]). In (54) and (55) the symbol ( ) may stand for any scalar,
vector or tensor quantity.

Basic principles of thermomechanics

The derivation of the equations of motion of the thermoviscoelastic
sysbem will be based on the following fundamental principles, which
express certain conservation and balance conditions between the dif-
ferent field quantities.

According to ErmngEN [11] these principles are:

— Conservation of mass

— Balance of momentum

— Balance of moment of momentum
— Balance of energy

— Clausius-Duhem inequality

— Constitutive axioms

A more detailed treatment of these principles will be given in the
following sections.

Conservation of mass: Since the deformation (33) carries the body v,
(see Fig. 1) into its deformed position », the mass conservation con-
dition expresses the physically obvious fact that the total mass of the
body should be invariant under (33). In mathematical form the prin-
ciple is
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Jv

/ odv = / 2oty (56)

where o(x) and go(X) are the mass densities of the body in E, and
in K respectively. In this paper (56) is used in two local forms, which
will be developed below.

The first local form is obtained by differentiating both sides of (56)
materially with respect to time. It should be noted that the right-hand
side of (56) is independent of ¢ Thus

d ~

E dm =0, (37)
where '

dm = p(X)dv . (58)

As to the second local form, it is found that the volume element
dv, transforms under (33) as

dv = detFdy, . (59)
Consequently, with the aid of (59), (56) is transformed into
oo(X) = dotFo(x) . (60)
By (39) and (45)
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detF = v/ det(I + 2E) + <), (61)
from which, with the aid of the Cayley-Hamilton theory, we find (to
first order).

detF = 1 + trE -+ ¢ > (62)
We can now obtain the required second local form from (60) with the
aid of (46), (49), (p1) and (62). Accordingly
o(x) = eo(x) — div(g(x)u) + <5 - (63)
[Remark: In (63) the notation
diva = tr(d,u) (64)

has been used for convenience.]

Balance of momentum: Balance of momentum states that the material
time derivative of the momentum will be balanced by the sum of the
surface and the body forces, or that

d .
o vdm = / Tnde + f fdm + / Fdv . (65)
v v v v §

In (65) v is the velocity (34), T € L(V.;V,) is (the surface density
of) the spatial stress tensor, n € V, is the unit surface normal, and
f€V, and F €V, are respectively the mass and volume densities

of the body force. f is assumed to be conservative (i.e. expressible
as the gradient of the gravitational potential). Since o(x) has the form
(63), the total gravitational potential can be expressed as the sum of
the potential @, caused by the static part and the potential @ caused
by the dynamical part. In other words

f= 0,9, + 0,D. (66)

According to Newton’s theory of gravitation (see e.g. MARTENSEN [25])
4 0o(X’) ,

@OWG/IX—X'I dv (67)

and
div (go(x")u) »

®=—G :
|x — x|

(68)
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In (67) and (68) @ is Newton’s gravitational constant and |x — x|
means the distance between x € , and X' € B, in the sense of the
metric (5). As to @, it follows from the convergence of the integral in
(68) that @ 1is an infinitesimal quantity of first order in R,. It may
be shown by potential theory methods (see MARTENSEN [25]) that

— 4nlGoy; X €Ev
div (0,D,) = 69
( X 0) 0 , X EU ( )
and
[4.77,G'div(gou) ;X €Ev
div(0, D) = { (70)
l 0 i X€Ev

are the local forms of (67) and (68) respectively.

Since the model used and the numerical method of solution introduce
a certain finite number of jump discontinuties for the dynamical variables
on the set of surfaces {;}, which are concentric and have no points
in common, the application of the ordinary Gauss’s integral theorem
to (70) in the regions between different §;, followed by addition, supplies
(70) with the jump relation

[0,@ * n] = 4xnG gu - n]; X €{S;}, (71)

which ought to be satisfied on {S;}. The square brackets in (71) mean
the jump suffered by the quantity inside.
To make later use of (71) a new variable ¥ will be introduced by

V=20 -n—4nlgu-n, (72)

Thus the jump condition (71) becomes equivalent to the continuity of
¥, or

[P]=0;x€{S}. (73)

For future reference it should be noted that the Laplace transforma-
tion of (70) and (72) changes only ¢ with p.

Returning to (65) one sees that, before the local form of this equation
has been obtained, the surface integral ought to be transformed into a
volume integral. Therefore Gauss’s integral theorem ought to be modified
to take into account the jumps in the dynamical variables on the set
of surfaces {S;}. For present purposes a sufficiently general modification
is found by applying the usual Gauss’s integral theorem to the regions
between different §; and adding the results. In this way



Oscillations of a thermoviscoelastic, selfgravitating, 15

/Tnda :/diVT dv + Z/[Tn]da, (74)

v v

where [Tn] means the jump in Tn on .

It follows from the above that the global form (65) of the balance
condition for the momentum may, with the aid of (57) and (74), be
transformed into

av .
(0 g — divT — of — Fldv = Zis [Tnlda (75)
from which
dv
05 = divT +of + F (76)
and »
[Tn] = 0; x €{S;}. (77)

(77) merely states that the stress vector Tn should be continuous on {S;}.
In order to obtain the linear infinitesimal form of (76), the various

nonlinear terms should be transformed to their first order infinitesimals.
With (47) and (63)

dv )
07 = el > | (78)

In Appendiz A it has been shown that, to first order infinitesimals,

T=mpl—u-0,pI+Tp+ (>, (79)

where p,I is the hydrostatic tension and T, is the dynamic part of
the stress tensor.
By (63) and (66) the term pof takes the form

of = 00,D + (oo — div(ge))9, P, -+ > (80)

The unknown hydrostatic tension in (79) may be eliminated by use
of the static equilibrium condition, which is obtained most easily from
(76), (79), and (80) by setting the time dependent variables as zero. Thus

0P — 0o(X)g =0, (81)
where g is the gravitational acceleration defined by

g=— axqu . (82)
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The Laplace transformed equations of motion of nonrotating media
will be obtained from (76) after the substitution of (78), (79), (80), and
(81) into it. Thus, to first order infinitesimals,

eoP*u = — div(gou - gI) + div(gou)g -- divTy + 000, D -+ F - >.  (83)

The effect of rotation on the balance conditions: In this section certain
effects of the observer transformation

X' = Qx;QQ” = I (84)
' =t—a

will be studied with some care (for a more general account see TRUESD ELL
and Norr [40]).

Such vectors and tensors which transform under (84) according
to the objective laws

and
T/ — QTQT

do not cause any changes in the form of the balance conditions.

On the other hand, the velocity and the acceleration are not objective.
To get their transformation laws (84) is differentiated twice with respect
to time. Thus

’ CZX, sWa Y ]
V=g e

and

d2x’
a’ = iE 4Q"x’ — 24Q7v’.

Using the results of the previous section, together with the trans-
formation law for the acceleration obtained above and the objectivity
of the other vector and tensor fields, the reader may convince himself
that the balance condition for the momentum in the rotating coordinate
system (x’) is of the form

’(lzx, r ! IV 181 1ANT v ANT 7 ’
o' 7 = div'T + o1 + 0'QQ"x" + 20'QQ"V - F'.  (85)
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In order to put the quantity QQ“v’ in a physically more meaningful
form, the time derivative of the orthogonality condition

QQ" = I
shows that the tensor

4 =4qq" (86)
is antisymmetric. In other words

LT =—4A.

7

Therefore there is a vector @’ such that
24v = 2QQ"V = 20" X V' (87)
(see e.g. PacH and Frey [27]). If, instead of o', a new vector e is
introduced by
m = — o (88)

it is seen that « is readily interpreted as the angular velocity of the
system (x’) with respect to the system (x).
The time derivative of (86) with the assumption

A=0
(¢.e. rotation is very weakly time dependent) gives

49"x = — 4Q"x' = — 4Q”(4Q)"x’' = A(4X)).

Therefore
49"x = ' X ("X X). (89)
It can readily be shown that (89) is the gradient of the scalar field
¥ = —Ho XX
Consequently
4Q7x = 3.y - (90)

As to the Laplace transformed balance condition for the momentum,
the substitution of (78), (79), (80), (81), (87), (88), and (90) into (85)
results in

gp*u = — div(gou - gI) -} div(gu)g + divT,
+ 000, P — 2¢ppwXu + F + < D

to first order infinitesimals.

(91)

2
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In (91) the dashes have been dropped and g is the acceleration due to
gravity, defined by

g§=— axéo ’
where @, is the geopotential (see Jeffreys [19] ).

Balance of moment of momentum: This condition states that the rate of
change of the moment of momentum is balanced by the sum of the
moments of the surface tension and of the body forces. This means

d

dt XX vdm = /XXTnda—]—/Xdem +/x><de, (92)

do
from which it follows, with the aid of (57), {74), (76), and (77), that

T=T". (93)

In other words the stress tensor ought to be symmetric.

Balance of the energy: This says that the rate of change of the sum of
the kinetic and internal energies is balanced by the sum of the mec-
hanical and thermal rates of working, or

1 d

d
Y dt v.vdm + — dt sdm—/v Tnda+/v fdm

+/v Fdm —I—/q ndm —|—/hdm

In (94) & is the mass density of the internal energy, ¢ is the negative
of the heat flux vector, and % is the mass density of the rate of working
of the internal heat sources. With the aid of (57), (74) and (76) the energy
equation (94) may be put in the forms

0é = to(LT) + divg + oh; x € {S;} (95)

(94)

and
[v:Tn]+[q-n]=0; x€{S;}. (96)

In (95) L is the velocity gradient defined in (36). As to the jump relation
(96), it is seen that, using the continuity of v and the relation (77),
(96) reduces to
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[q-n]=0;x€{S}. (97)

A more useful form of the energy equation (95) will be obtained,
if, instead of T, use is made of the Piola stress tensor T* (see e.g.
CorEMAN [8]), which is defined by

1 _
T = FLTF' . (98)
Hence T* together with
tr(FT*ET) = tr(FTFT#)
gives, instead of (95),
08 = —g tr(T*C) 4 divg + ok . (99)

In Appendiz B it has been shown that the Laplace transformed
equation of energy has the forms (100) and (102) in isotropic and in
transversely isotropic symmetry classes respectively.

— Tsotropic symmetry:
divg = gpesT + dypydiva + <5, (100)
0
where, corresponding to the three memory models used in dppendiz

A, the parameters ¢; and % have the following values (see further
Appendiz B): 0

Model 1: Cp = ¢Cg , P=9
0
1 k
Model 2: Ty = P, = v
0ae Cr Cg +,g:1 Ctp Y Y _I_iZ:IYIp (101)
H . k
Model 3: Cp = ¢p + z apt, ¥=v+ z 7"
i=1 i=1
— Transversely isotropic symmetry:
divq = gpepT + Jepydivu + Fopps, . + {5 . (102)
0 0

According to Appendixz B the parameters in the three memory models
used are given by
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Model 1: %5 = ¢g , P=9 , Y=
1 0 k 0 k
Model 2: Tp=cp+ > ¢p', Y=y + > 90", ¥ =9 + > pip’
i=1 [} =1 0 i=1 (103)
I k E
Model 3: &= o5 + 2 op', 5=y + 29", 7' =9 + X iy

Clausius-Duhem inequality: This expresses the fact that the production
of the entropy is a non-negative quantity, or that

iy /q'nd /hd >0 104
a ) ™ _a g M pem=0, (104)
where # is the mass density of the entropy and # is the absolute

temperature. However, before the local form of (104) is given, the new
variables

h= 09,9, (105)
1
q* = 2 Fq, (106)
and
y=12¢— U7y (107)

are introduced.
Next, the use of (57), (74) (applied to q), (97), (99), (105), (106)
and (107), together with

q.a{ﬁ h.F—lq h.q*
L B S

gives, instead of (104),

*

)

Fte(T*6) — ¢ — 9y + >0. (108)
Constitutive equations: A study of the equations (70), (72), (83) (or (91))
and (100) (or (102) ) shows that the dynamic variables form a 3 41 41
+ 643+ 1= 15 dimensional product space, while the range of the
equations for the dynamic variables in questionisonly 1 +1+4+34+1 =6
dimensional. Because of this high underdeterminacy of the previous
system of equations, additional relations between the dynamic variables
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u, Tp, D, 9, q, and T are needed to fill the lacking 9 dimensions. Such
relations are traditionally called constitutive relations.

Instead of using the classical examples (Hooke’s stress-strain relation
and Fourier’s heat conduction law) the purpose of this paper is to place
the constitutive theory on the axiomatic basis of modern continuum
mechanics. A proper set of axioms for the present purposes is found in
the works by TruEspELL and Norr [40], ERiNGEN [11], and JAUNZEMIS
[16]. These axioms are:

A. Causality: In a thermomechanical system the independent variables
are the deformation and the temperature.

B. Determinism: The deformation and the temperature are influenced
by the previous history in space and time. The history in space means
that the response at the spatial point x is influenced by the defor-
mations of all material points of the body, whereas the history in
time means that the response at x is influenced by all times prior
to the present one.

C. Equipresence: Every constitutive equation has « priori the same
list of independent variables provided that this does not contradict
other principles of continuum mechanics (e.g. balance conditions
and other axioms).

D. Objectivity: The response of the material is invariant under the
rotations of the spatial frame of reference x.

E. Material invariance: The response of the material is invariant under
some subgroups of the full rotation group of the material frame
of reference X.

F. Local action: Only a small neighbourhood of the material point X
should influence the response at x.

G. Memory: The memory with respect to the past histories in time
should be »shorty (i.e. except in & small neighbourhood of the present
time all other times from the past should be neglected).

H. Admissibility: The constitutive equations should not contradict the
other principles of continuum mechanics (e.g. the Clausius-Duhem
inequality (108)).

If the axiom of memory (G) is satisfied by a certain finite number
of the time derivatives of the independent variables (C, #, h), Appen-
diz A shows that the Laplace transformed stress-strain and heat con-
duction relations, in the two symmetry classes (isotropic and trans-
versely isotropic), take on the following forms:
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— Isotropic symmetry:

T, = — yTT + Atrel -+ 2/ie 4 (> (109)
and

g=x0T+{>. (110)

(109) ¥ is the Laplace transformed stress temperature modulus,
and & are the Laplace transformed stress-strain moduli. In (110)
is in turn the Laplace transformed heat conduction modulus.

As to the explicit forms of these moduli, Appendiz A shows that,
in the three memory models studied here, we obtain:

In
7
%

k k
Model 1: T =21 —p,+ > AP, h=p+p+ > up,
i=1 i=1
'}7:’}) 3 52::%

k k
Model 2: A=24—p,+ > ko', fi=p-+p+ D up,
i i==1

i=1
~ k . k .
Model 3: l:l~p0—l—2)lip‘, ﬁ:lu_i_.p()_{—zﬂipl’
| i1

— Transversely isotropic symmetry:
Tp=— FI+ X Q x%)T + x* ® x%(fe,, + 1) + (x** ® a, 111)
+ a, ® x°) 2jie,, + a, ® afa(Ne! + Te,) + 2 e + (>
and
a=FI+x0Q x%)oT 4+ (>. (112)

As seen above, in this symmetry class there are two stress temperature
moduli y and 3’, five stress strain moduli f, 7, i, 7’ and %', and
two heat conduction moduli % and #%'. For the explicit expressions
for these moduli Appendiz A shows that
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Model 1:
k
B=F+pot 2 b0,

k
o=k pot 2w

;}7’ = '}/I >
Model 2:

~ k .
ﬁ = ﬁ +p0 +‘Zlﬁi29‘ >

k
p= -+ Py +~_zl‘uii”i,

4
y= 7+ Zlmo‘,
Model 3:

k
B=PB+ D +-Zlﬁipi’

k
o= pt o+ 2 upts

1
Y=y 4+ Zly!pi ,

k
A :}1_270‘*‘2}%171.,
i
B
i = p 4+ p ‘I‘_zl,“ipl,
;'6 = X ’
~ k .
}. :l —po"l“zlipl,
i1
B
B= o+ 2

® =12 ,

k
2 =% —po+ 2> Ap',
i=1

k
Bo=p + 2+ Zluépi :

X1
i

m
i
* + Z wp ,
i=1

k
V=2—p+2 &
i=1

xy
I
X

!
y= 9y + Zlmf
%/ _ %1 + .i%'{p:

Equations of motion in a rotaling coordinate system

Since the range of the equations (109) and (110) (or (111) and (112))
is 9 dimensional, it follows that the system (70), (72), (91), (100) (or
(102)), (109) (or (111)), and (110) (or (112)) is complete with respect
to the dynamic variables. Consequently the Laplace transformed equa-
tions of motion for the rotating thermoviscoelastic sphere in the two
symmetry classes assume the following forms:

— Isotropic symmetry:

eop*u = — div(gut - gI) 4 div(egu)g - divTp

(113)

+ 000, D — 20ppw X U+ F (5,

Ty = — yTI 4 Atrel + 2je 4+ (>,

(114)
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divg = gypégT -} ﬁlop?divu + <>, (115)

Q=0+ (>, (116)

div(0,P) = 4n@div(ggu) + (>, (117)
Gl

= ow 47nGoqu - 1, (118)

divg = 4200, (119)

— Transversely isotropic symmetry:

In this symmetry class the equations of motion are the same as before,
except that (113), (114) and (115) ought to be substituted by

Tp = — FL+ X @ x%)T + x°Q x%Bz, + 42) + (x*° @ a, (114)*
+ 8, ® X)2fie® + a, ® a,[a(I'el + Je,) + 23] + (O,
divq = g,pCT + dypydivu + Py, + >, (115)*
[i] 0

q =T + #T x4 (. (116)*

Transformation of the previous equations of motion into scalar systems:
Transformation of the equations (113)—(119) into sets of scalar equations
may be accomplished in the spherical symmetry case by using a repre-
sentation theorem for tangent (surface) vector fields (see Backus [4]
or [5]). Accordingly, any tangent vector field a (a vector field with
no normal component) may be represented on the unit sphere with the
aid of two scalar fields 4 and B as

a = a,(a4,, + & B)y), (120)

where {a,} is the base system (28) on the unit sphere §;, ¢*f are the
contravariant components of the surface metric tensor, and ¥ are
the confravariant components of the surface rotator — x,x I

The second step in the transformation is to express the radial com-
ponents of every space vector, as well as the scalar potentials of its
surface part (120), in a series of spherical surface harmonics. Following
GorrTZEL and TRALLI [14] the surface harmonics adopted here are the
eigenfunctions of the systems below, i.e.:
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ViXP = — 10+ DAY (121)
and
0,X7" = imX}",
where
Vi=V, V, (122)
and
gt.)0

— q7 — 50 JEN—
V, = a’0, = 6%, + nd o
The last expression in (122) has been obtained by changing the base
system {a,} into the orthonormal system (B9, ¢%. As to the eigen-
functions, it is seen that they form an orthonormal system with respect
to both the indices over the surface of the unit sphere S;. In other words

*
./‘X?’IIX;“da = 6111'111,61’1 ’ : (123)

S{
*
where X7 means the complex conjugate of Xj" and

1; m=m
5 (

" 0; m=#=m.
According to the previous discussion the dynamical field quantities
T &, u, q, F, oxu, and T, are expressed as follows:

s

T X7, (124)

!

n
Ms
M~ 1M~

O —= 2) ,..=-,®’X"n’ (125)
u § :Z, [Ux0X] -+ a (Ve Xy, + Wit X1, (126)
q é ; (XX} -+ a (M X}, + N X1, (127)
f‘ = :o ,,Z_e[, XX - a (I’,a"‘”’X;’l‘ﬁ + @aﬂf’ EAID | (128)
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8
X
=

ll

L

M...

’[ﬁ,xox,m + a (Vb X7y 4+ W Xy,)], (129)

T
=

m

&

I
N
M~

[Px*Q XX} + (X ® a, -+ a, ® X°)(R,a°‘ﬂX}’!‘ﬂ (130)

1

Il
=

m=—|

+ S X)) + T8, ® a,X"] .

Ml

Because of the length of the calculations involved in the substitution
of (124)—(130) into both the systems of Laplace transformed equations
of motion given in (113)—(119), the details have been left out. (The
interested reader is referred to the excellent article by Backus [5],
where the scalar decomposition of vector and tensor fields has been
treated in detail.)

As the result of the above process the systems (113)—(119) are
decomposed in each symmetry class into two coupled systems of ordinary
differential equations (131), which describe (with respect to the surface
harmonics) the coefficients of the spheroidal (poloidal) and toroidal
(torsional) oscillations of the rotating model earth.

In terms of matrix calculus the systems above are of the form

dy :
o =A@y — 2epef —f. (131)

where « is the component of the angular velocity vector
o = ok (132)

along the axis of rotation k (in this work k is the unit vector on the
z-axis of the Cartesian coordinate system embedded in E). It is obvious

from the discussion above that the vectors ¥, f, f and the elements
d s

of the matrix A(p;r) have different expressions according to the
material symmetry (isotropic or transversely isotropic) and according
to the type of oscillation they are permitted to do (spheroidal or toroidal).
Consequently we find

— Isotropic symmetry:

1. Spheroidal oscillations:
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U, 0 0
Vi 0 0
T, 0 0
@, 0 0
Yy = P i {: ﬁ; » f: I (133)
Rz f}l Fl
@ 0 0
¥ 0 0
and
27 I+ 1)
Ay= — vy A = 5 o
(A + 2 4) (A -+ 25)
y 1
A13:7,—{—2ﬁ’ A15 7 2‘&
1 1 1
A21—"7’ A22=7’A26=ﬁ
1
Ay = =
Ay = 4dme A =1
dog  4u2p -+ 37) (134)
Ag = 0p® — T 97y
? 724 + 2 )
o 2HE2E+37)
470 47 i1+ 1)
A53 - 7’(7»4—2;])’1455:—7(7»—}—2,&)’ A5s: v 7A58:—90
oy 2020 +37) 2 40+ DE( 4 )
Aﬁl—‘ r - 72(14—2,&’) 3 AGZ_QOP - 7,2 + 7,2(2_{_ 2,ﬁ)
290 Qo 2
Aea—- 7’(7»—|—2ﬁ)’ A64 = - r’ Ass = ‘,,.(I_l_z‘ﬁ)"» A%: —7



28

P. Saastamoinen

4 Qouyp 200 + 1)dopyp
] 0
M= A= T e
I+ 1) ’90?70517 "9'0?:’29 2
A73=005E10+ 2 +2—{—2ﬁ’A75:7u+2ﬁ’A77:~7
41Ul + 1)mp, W+1) 2
Aszz—f: 84 — 72 > 88:_7.'
2. Toroidal oscillations:
W, 0 0
y:<s, I =\w ) T= s
and
1 1
An = ,T ’ A12 = 7
®+1— 2 3
Ay = op® + T e o Ay P (136)
— Transversely isotropic symmetry:
1. Spheroidal oscillations:
¥, f and f have the expressions (133) and
d s
27 I+ 1i y 5 1
Ady=——=, Apy=— " 4, — " 4 _
11 Tﬁ 12 ,,,ﬁ 13 ﬁ 15 ﬁ
1 1 1
Ay = — P Ay = o Apg = ﬁ
1 (137)
A37 - ;ﬂ __l_ %I
Ay = dmo G, Agg=1
doyg AT ) 4R
Ay = gpp* — ”

r2

72f’

(135)
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Az = Il 4 1) +

t

=
£

7 7,2

o 2N+ /) 2711

2IG +¥) 27 2 (4
dn=""53 Ay = \5 — 1)
W+ 1)
Apg = T: Agg = — 0
o 2N 4p) | 22
Ay = o 12 +, ﬁ , Agp = 0op®
WD F23) 0+ DB 2@
+ 72 - ?‘ZB - 72
y z({’ +7) Qo i
A63: 7_ - T> A64: — 7,, A65: _‘773’ Ae(s:
29gp 2200 + ')
A — o 0 0
n= T, B >
. 7“90?(2? + %’) 19-00&10
A'lz — l(l —I" 1) ?'ﬁ - ,
04D Gply -+ 9)7 +7)
- 0 0
Az = 00Cep + 2 -+ B s
B (5 + 7) 2
0
A75: _—B—, A77 = - 7
4l(l + 1o G W41 2
Asz = - " P A84 = 72 > Ass = - 7
2. Toroidal oscillations:
y, f and f are the same as in (135) and
d s
1 1
Ay = 7 4y, = ?;
4 1 — 27 3
Ay = gop® + e Ayy = — e

29

(138)
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Boundary conditions for spheroidal and toroidal oscillations: Because

of the parameter p in the matrices (134), (136), (187), and (138) and

in the vectors f and f, the introduction of certain boundary con-
d

s

ditions makes it possible to solve the coefficients U;, V; and W,
as a result of certain eigenfunction expansions.

Guided by physical intuition concerning the seismic model adopted,
we expect that the penetration depth of the seismic energy varies greatly
for different parts of the eigenvalue spectrum. Thus, given a certain
bandwidth of eigenfrequencies (discrete in case of the free oscillations),
there is a depth (r <<7) below which the medium is practically in
a state of static equilibrium. Another set of boundary conditions arises
naturally from the behaviour of the dynamic variables on the free
surface of the model earth (» = a).

Since there is a good deal of seismic literature concerning the boundary
conditions for Ui, Vi, @y, Pi, R, ¥, Wi, and S; (see e.g. Alterman
et. al. [2] and TaxevcEr and Sarro [38]), only the boundary
conditions for 7 and @ need some consideration here. According
to what has been said about the vanishing of the seismic energy at
7, T: ought to vanish there. As to the radial component @; of the
heat conduction vector, it is seen to vanish at the free surface 7 = a.
~ In matrix notation the boundary conditions described above take
the form

IVOyO + Waya =0 s (139)

where the subscripts o and a refer to » =7, and r = a respectively.
The matrices W, and W, are for spheroidal and toroidal oscillations
respectively as follows.

— Spheroidal oscillations:

I 0 0 0
Wy = and W, = , (140)
0 0 w I

where I and 0 are the 4 X 4 unit and null matrices, respectively,
and W is the matrix

0 0 0
0 0 0 0
W = |0 0 0 (141)
141
o o o -t1
a
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— Toroidal oscillations:

1 0 /0 0
Wy = ) and W, = ( . (142)
0 0 0 1

Boundary conditions for tidal deformations: Since the coefficients with
respect to the surface harmonics of the displacement vector u and of
the gravity potential @ in tidal deformations are obtained in the next
chapter, it is relevant in this connection to give the boundary con-
ditions needed.

The boundary conditions given by Taxrucar and Sarro [38] added
to the conditions for 7' and @; obtained in the previous section are
in matrix notation of the form

Woto + Woys = b, (143)

where the boundary matrices have been given in (140) and b is the
column vector '

(144)

S

I
No
T
+OOOOOOO

S

Body force expressed by the jumps in the displacement and in the mormal
stress vectors: Occasionally, instead of a volume density (F), the focus

mechanism is expressed by the jump discontinuity in the displacement
vector and in the normal stress vector (see e.g. ALTERMAN ef. al. [2]
and Sarro [33]). In other words

[ul=u and [Tpx’]=t, (r=r), (145)

where u and t € V, describe the magnitude of the focus on the sphere

s s

r=1s.
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To transform the above jump conditions into scalar form use will
be made of the decompositions (126) and (130) together with

u = Z z [Ux0X]" 1 a (V,af"ﬂX,lﬂ—l— W,e ﬂX,Iﬂ)] (14:6)
s I—0 m=—1 s
and
0 1
t = z 2 [Plon'"+ a ( Ra* X3, 4 S,e PXT . (147)

Consequently, after some manipulations, (145) takes the form

[yl =1y, (148)

where for the spheroidal oscillations

Ui

s

4

s

0

(149)

I

)

and for toroidal oscillations

W,
<. (150)
S;

l

ta

Solution of the equations of motion

The adjoint homogeneous boundary value problem: Before going into the
solution of the nonhomogeneous boundary value problem, it turns out
to be useful first, instead of the present homogeneous boundary value
problem, to consider the corresponding adjoint problem.
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For this purpose the operator below,

— = Ay; Wopo + Wy =0, (151)

£
is multiplied from the left by the row vector z (complex conjugate of

z) and the result is integrated from 7, to a@. In this way

a a

/*dyd Ayl
2 g dr = [ zdydr.

Partial integration of the left-hand side of the above expression gives

a

o= (5
2y == W—{—szdr.

To To

Thereafter the use of the boundary conditions of (151) on the left-hand
side of the last relation results in the requised adjoint boundary problem

*

dz #* # *
o= — 4 2 WS + 2, WE=0. (152)

In (152) the matrices WS and W¢ are for the spheroidal and toroidal
oscillations, respectively,

— Spheroidal oscillations:

0 0 c I 0
W§ = and W, = . (153)
0 I —W o
— Toroidal oscillations:
0 0 1 0
W§ = ( ) and W¢ = < ) . (154)
0 1 0 0

Formal solution of the monhomogeneous boundary problem: The non-
homogeneous differential equation (131), together with the homogeneous
boundary conditions (139), form the nonhomogeneous boundary value
problem

dy
o Ay +7f; Woyo + Wy =0, (155)
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where

f=— 2gopco{ - f. (156)

In Appendiz C it has been shown that the solution of (155) is

y 2/6’(10;9',8) f(s)ds (157)

where G(p;r,s) is the Creen’s matrix of (155). The explicit form

of G(p;r,s) is

Y () DWW, OZ(s) ; r>s
Glp;r,s) = % ; (158)
— YD W, Y, Z(s); r<s

*
where Y(r) and Z(s) are the fundamental matrices of (151) and (152)
respectively and D! is the inverse of the boundary matrix

D(p) =W, + W.Y,. (159)

As can be seen from (158), the singular points (poles) of the boundary
value problem (155) consist of the set {p;}, which are solutions of

det D(p) = 0. (160)

The set {p;} is called the eigenvalue spectrum of the problem.
Because of the importance of {p;} for inverting (157) into the time

domain, the following assumptions will be made about the nature of

this set:

— {p;} is at most denumerable with no points of condensation in the
finite parts of the complex p-plane;

— {»} is bounded from below, i.e. there is a fixed p, such that
123l = |pol , ¥ 25 €{ps};

— The real part of {p;} is negative, which means that the spectrum
lies on the left half of the complex p-plane. :
Under these assumptions the inversions of the Laplace transforma-

tions in question may be accomplished using the methods of contour

integration (on contour integration see BATm [6]). Subsequently the
solutions (the coefficients with respect to the spherical surface har-
monics) are obtained as the residue sum
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a

ylr 1) = 3 e / Y, (NR.Z.(s)fds » (161)
n=1
where the index = refers to p, and R, is the residue contribution
R, = Res[R(p)] = lim(p — p,)E(p) (162)
Pn P>Pn

of

[D—1W0 ¢ r>s
WY, r<s’
As to the focal mechanism (148) (i.e. jump conditions in the dis-

placement and in the normal stress), Appendiz C shows that the
Laplace transformed solution will be

yr,p)=G@;7r,9)y. (164)

8

R (163)

The inversion of (164) using methods of contour integration results
in the time dependent solution

YD) = 5 YR (- (165)

$

Determination of R,: Seismological literature shows principally two
procedures which may be used in evaluating residue contributions.

The direct method involves differentiation of the boundary matrix
of the problem partially with respect to p (for this method see Sato
et. al. [34] and [35]). Since the boundary matrix is usually obtained
as a result of a long chain of numerical calculations, it is understandable
that numerical differentiation may lead to considerable inaccuracies
(i.e. instability).

The second method is based on variational arguments (Rayleigh’s
principle) and consequently leads to integrations instead of differenti-
ations (on this method see JErFREYS [17] and [18], TAREUCHI et. al.
[39], KevLis-Borox ef. al. [21], and HARKRIDER and ANDERSON [15].
Usually this method gives results more rapidly and more accurately
than the first.

Because of the special method of solution used in this paper, it seems
appropriate to represent the residue (162) in a form which is particularly
suitable for the present purposes.
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It is seen in Appendiz O that the differential identity

n

dr

=AY, + (4, — A)Y,; D(p,) = Wy + W,Y,, (singul.) (166)

may be inverted into the integral equation
Y.0) = [0, 904,6) — AG)Y, s

where G(p;r,s) is the Green’s matrix (158). With the aid of the explicit
expressions (158) and (163) for the Green’s matrix the above relation
takes the form

a

£
nm:/ﬂmmm&@—mmﬂ@m. (167)
Since the matrix
x A (r)— A
J a(7) (r)
Pn—2D
is nonsingular, multiplication of (167) from the left by (168) followed
by integration from 7, to @ gives

(168)

e A —AG) _/ 40— 40)
r/ Z(r) P —p Y, () _r Z(r) P —p Y (r)dr
' . ’ (169)

* An(s) - ‘A(S)
/ (. — P)LB(p)]Z(s) T_‘p— Y, (s)ds .

n
To

Since the matrix

a

; A (1) — A@)
(r) Z)T Y, (r)ydr (170)

is obviously nonsingular, (169) may be multiplied from the right by the
inverse of (170) to result in
¥ Au(r) — Afr) )
I = Z(r) T h—p Y(r)dr | (p. — p)[E(p)] . (171)

r(l
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Proceeding to the limit in (171) and solving the result for R, gives
the required residue contribution in the form

a

£ dA,(r) -t
B, = — [ f Z,(r) i Y, (r)dr| . (172)

To

T'idal deformations: The problem concerning the amplitude distribution
caused by the tidal forces has been studied extensively in the seismo-
logical literature (see e.g. the works by TArEUCHT [37], TAKEUCHI and
Sarro [38], Arsor and Kwuo [1], ete.). Since the methods of this paper
give in compact form the Laplace transformed coefficients (with respect
to the surface harmonics) of the dynamic field quantities, it seems
appropriate to study the above problem also in this connection.
The problem is stated in mathematical form by the homogeneous

part of (131) with the boundary conditions (143). In other words

dy

— = Ay Woyo+ Wy, =b. (173)
With the aid of the fundamental matrix Y the solution of (173) is
expressed as (see Appendiz C)

Y= Yy,. (174)

For the unknown initial value %, in (174), substitution of this relation
into the boundary conditions of (173) and solving for g, gives

yo = Db, (175)

where D' is the inverse of the boundary matrix (159). The required
coefficients are now obtained easily from (174) and (175). Thus

y = YDb. (176)

To get the actual forms of the gravitational potential and the dis-
placement vector we ought to solve (176) for @&, in the case of the
gravitational potential, and solve for U,, ¥V; and W, in the case of
the displacement vector. The results are then substituted into (125)
and (126), respectively.

Perturbation  solution for the rotating sphere: Studies on the free
oscillations of a rotating sphere (Backus and GiLBERT [3], PERERIS
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et. al. [29]. MacDonaLD and Ness [24], GmBErRT and BAckrus [12],
and DAaLEN [9]) have shown that rotation causes splitting of the spectrum
(new »lines» appear in the set {p;} and new peaks enter the amplitude
spectrum), and in addition the rotation couples the spheroidal and
toroidal oscillations.

In this section it is shown that, in the case of a rotating sphere,
the set {p;} is influenced by the focal mechanism. Moreover, explicit
time dependence (to first order) for the coefficients of the dynamic
variables with respect to the surface harmonics will be given.

As seen from (164), the solution corresponding to the focus expressed
by the jump relations (145) may be obtained as a special case of the more
general solution (161). Therefore it seems appropriate in this section
to study only the problem

dy

Frl Ay — 290ow f Woyo + Wy, =0. (177)

According to the usual procedure the solution is sought by a per-
turbation scheme with respect to the parameter

w
6= (178)
where o is the axial component of the angular velocity of the rotation
and p° is an eigenvalue of the unperturbed problem. As regards the

magnitude of & it is necessary to assume that

w
le] = | < 1. (179)
The perturbations in p and y are, to first order, of the form
p=p"+ep' + {5 (180)
and
’ y=y"+e +<{>. (181)

Subsequently, substitution of (180) and (181) into (177) and expansion
of 4, f, and f in Taylor series around p° gives, to first order in e,
d s

d_yo .@_ AO (AO dAo 0)
dr +e dr "+ e ¢ dp
df° (182)
~2@op°28f° f° ep* d@ + <>,
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where the superscripts zero and one refer to the unperturbed and per-
turbed states, respectively. (182) is seen to be equivalent to the two
simultaneous systems

dy

W o — o g+ Wl — 0 (183)

and

dyl 440 dfo

o o —pl_dip—; Woyo+ Waya=0. (184)
d

The solution of the unperturbed problem (183) has been obtained
in (161). Consequently

«© 0
Pt = — 2 & [ 1) Ri’,Zi(s)fn(s)ds (185)

As to (184), it is seen that, before the solution of (184) is obtained,
the perturbation contribution {p;} to {pj} ought to be determined.
According to Fredholm’s alternative (see e.g. KanTorowirscr and Axi-
L.OW [20]) the nontrivial solutions of the adjoint boundary value problem
ought to be orthogonal to the nonhomogeneous term of (184). In other
words

© o dAl af s

& * A 9 #*

To To

from which the required perturbation contribution

-*0 0
zj{jds

To

p]l = 2917]0“ a dA° df() (186)

% i % i
0 0 0
/(zj p ! i dp > ds

Ta

is easily obtained. In (186) we should notice the interesting fact that,
because of the rotation, the set {p;} depends on the focal mechanism
af}

through ——(.
g dp
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After solution of {p}} the solution ¢'(r,¢) is obtained in the same
way as in the treatment of the unperturbed problem. Accordingly

%
— z ot Y° (r)RAZ(s)fr(s)ds (187)
where
aa’ afe
2 s
fn =10 o Yo — 20000 f1 — Pa o (188)

p and y are found (to first order) by setting (186) into (180) and
(185)—(186) into (181). Thus

a

ok
/ 2fds
d

. 0 . To
Pi=p |1+ 20w a i (ZAJ(-) ' (lfjo (189)
0 o 0.
2 i Y — % p) ds
and
© g
yr, 1) = — 2 ' | Yo(r) RZ2(s) (fa(s) — eufuls)ds, (190)
n=1
where
w
& = T -

n

Looking more carefully at the expressions (189) and (190) we see
that both involve the term f. As was observed in (1383) and (135),
d

the components of this quantity are U, and 7, for the spheroidal
oscillations and Wz for the toroidal oscillations. However, ﬁ;, f}z and
Wi were the coefficients of @ x u in the spherical decomposition
(129) Therefore, after some work on (129), it may be shown that (71,

V; and W, are certain linear combinations of U, ,, U, Uy,, V,_,,
Vi, Vipqi, Wiy, Wy, and W, ;. In other words the rotation couples the
motions due to the spheroidal and toroidal oscillations (for many aspects
of coupling see DAELEN [9]).
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Synthetic seismograms: The transformation of (126) into the time domain
shows that the displacement vector u is, in the spherical coordinate
system, of the form

) i
u(r, ', u?, 1) Z Z [U,(r, )x°X} + ay(V,(r, )a*’ X,
o mZT (191)

+ Wi(r, 8 aﬂX{[ﬁ))] .

Tor a rotating sphere U(r,t) and Vi(r,t) are obtained to the first
order from (190) in the case of spheroidal oscillations, while WWi(r, )
is obtained from (190) in the case of toroidal oscillations. For a non-
rotating sphere U;(r,t), Vi(r,t) and Wi(r, 1) are obtained from
(190) in the same way as previously with the exception that now &, = 0.

Some aspects of the mumerical solution of Y(r) and Z(7) Because the
solutions of the different boundary value problems were fully based

upon the use of the fundamental matrices Y(r) and Z(?) it seems
necessary to indicate some trends of two numerical processes which

may be used in obtaining the numerical values for Y(r) and Z(r).

In the first method (see SAASTAMOINEN [32]) #;,; and 7; (the index
refers to the respective values of r) are expanded into a Taylor series
around 7, 3. Thus, to third order in

h; = Yigr — 75 (192)
we find
hi 12 7"12 17} h3 177
Yir1 = Yirg + 5 Yirp t 7 Yy T g Y 2 (193)
and
hi ’ h2 12 hf III
Yi = Yy — o Yirp t g y,+1 — g Yir 2. (194)

Since y satisfies the differential equation

yl = Ay ’
it follows that (193) and (194) are equivalent to the equations

hi h}
Yo = \I + 5 Aoy ¥y + g Yiy (195)
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and
( ]?'i L:l? 11
Yy, = ‘I - ? Ai-;-% Yiry — ? yi+% . (196)
h; . ..
Because I — o 4;,y isinvertible for sufficiently small 7,, Yipy may
be eliminated from (195) and (196) to give
Yis1= By, + <h§> > (197)
where
h; I -t
B, =11+ ?Ai+% I — ?AH% (198)

and <A}y is a third order matrix quantity under the norm | -||.
In other words

IR || < 32 (199)
Starting from fixed y, recursive use of (197) gives
yr) =By ..., B Ryo + e,y (200)
where 7 refers to the number of steps between 7, and r,, and
Goa =R,y ...... BBy + ... ... + R, By K>, (201)

In the second method (see GILBERT and Backus [13] and Saasta-
moinen [31]) the matrix is taken stepwisely constant over a certain
number of intervals between 7, and 7, In other words

A(I)) = Ai+% + <};1> ; #€ [Ti > Iri-;-l] » )V(I” =1 PN (2 (202)

where <7;i> is a first order matrix quantity. Using (202) the differential
equation y’ = Ay takes the form

Y = (g + DDy 7€y, 1] -
The solution of this equation is of the form
Yirr = By, + by (203)
where

R, — ¢ itd (204)

b 3
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and (k) is a first order vector quantity under the matrix norm
I|-ll, or we may say

<> || < M. (205)
Tn the same way as before recursive use of (203) gives
Yr) = Boy oo vt BBy 4o+ &1 (206)
where
g, 1 ==R, 1 ...... By + ovnen. + R, 1 {ly_gy + Pp1) (207)

Tt is seen from (200) and (206) that a sufficient condition for the
convergence of
Yo =R, 1 ...... R,Eyy, (208)
nto y(r,) is
llena]l =0; 7— 0. (209)
[Remark: In the limiting process (209) it is understood that the end
values 7, and 7, are fixed, while the number of the interval points
tends to infinity.]
From (201) and (207) it is seen that the sufficient conditions for (209)
to hold are

L h=max{hi}—>0; n—> C0;
= (210)
2 B <1; %i€f{l,...,n}.

(198) and (204) show that the first condition may be trivially satisfied,
while the second condition is satisfied, if the eigenvalues of 4;,; have

negative real parts. Thus a careful inspection of the eigenvalues of
the matrix A at different points between 7, and @ may be of great
assistance in determining the regions of stability and instability of the
actual numerical computations.

Tt is seen from the above that, under conditions (210), the matrix

Y, =R, ,...... R.R, (211)
converges with increasing # to the fundamental matrix Y(r,).
As regards the adjoint fundamental matrix Z*(r), the relation
Z*(r) Y(r)=1
(see Appendiz C) shows that the regions of stability of Y(r) are
regions of instability of ;(7').
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Summary

As was mentioned earlier, the two main themes in_this research
work are:
— First to base the derivation of the equations of motion on the axio-
matic foundation of modern continuum mechaniecs.
— Secondly systematic use of matrix notation and especially the use

E

of the fundamental matrices Y (r) and Z(r) have made it possible
to present the solutions in a concise form.

Concerning the more detailed aspects we may make the following
comments:
— The memory models used in the constitutive theory are of the rate
type, i. e. the responses depend upon finite numbers of the (material)
time derivatives of the Cauchy-Green tensor €, of the temperature 9,
and of the temperature gradient h (see Appendiz A).
— The special expression (172) has been found for the residue contri-
butions at the poles of the integrand.
— As shown in (189) the source mechanism has a small effect on the
eigenvalue spectrum {p,} of the rotating sphere. '
— Explicit expressions (191) including the first order perturbations
have been obtained for the synthetic seismograms of the rotating and
nonrotating earth models.
— Two numerical methods for the solution of the fundamental matrices
have been studied in some detail. In particular a criterium for studying
the stability of the numerical processes has been given.
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Appendiz A

Constitutive equations: Because the treatment of the memory models
has been restricted in this paper to the rate type thermoviscoelasticity,
the responses are supposed to depend on some finite numbers of the
(material) time derivatives of €, and h (see (1 A) below). In addition
all the models studied here ( (1 A), (24 A), and (37 A) ) satisfy the axioms
A, B, C, D, Fand G (for further guidance see ERINGEN [11] and TRUES-
pELL and Nortn [40]).

1. Model:

. (k
T = FiC,6,...,C,8,h, X)FT

. (%)
q¢ = F§(c,6,...,C¢,9,h, X)

. ®)
e = C,6,...,0,%,h,X) (LA)

_ ®
n =%0C,C,...,0,9,h,X)

(%)
"[):’(2)(0,0,...,0,’19,11,)()
(1 A) shows that the material responses map the product space

Hk:TTL(Vl;Vt)chXVt (2A)
k

nto L(Vi; V), Ve, R, R and 9% respectively. In (2 A) [T L(V.; V)
k k

=IL(V,; V) X...xXLV,;V,). The norm in H; will be the sum of
the norms of the component spaces.

According to axiom H the responses (1 A) ought to satisfy the
Clausius-Duhem inequality (108). The time derivative of 3 mneeded
in this connection will be obtained according to (18). Thus

i+1

ok .
p = o.9[C] + ZI 090 © 1+ 0490 + 8,¢[Rh], (34)

where 9.4[]1 and V[ ]1€LIL(V.; V.); R), 09 €L(R.; RN) and
0,9[ 1€ L(V,; M) . Substitution of (3 A) into the C-D inequality
then gives
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(E+1)

F0(T* — 20.9)6] — Z 0L © 1 — 9n + 9,9) — 9,¢[h]

. (4 A)
hoa
+ 19\ —_—
) G+ .

Since ¢ , ¥ and h¢ H., it follows from (4 A) that

Wy =0, 9p=0 (5 A)
and

n=— Oy . (64)

T* may be decomposed into the sum of an elastic part and a dissipa-
tive part as follows:

T* = T§ + T, (7 A)
where the elastic part T is defined by
TE=2019. (8 A)
The dissipative part Tp is found to satisfy the inequality
(i+1) h-q*
} te(TS Za“’wECH g =0 (9 4)

Further restrictions (besides (5 A)) are obtained from (9 A) after
Th,» and q* have been expanded in Taylor series around the element

=(C,0,...,0,9,0)€H,. (10 A)
Consequently
TE=0,09% =0 G=1,...,k—1) and q*=0. (11A)
* * &

Finally, Taylor expansions of y,# (from (6 A)), T* (from (7 A)),
and g* around the element

Hy=(I,0,...,0,9,,0) €H, (12 A)

0

give for the infinitesimal constitutive relations the expressions
v = 9+ Ogf[E] + 0,47 + § aEE"(/?[E » E] + 0Ogy ;!'[E]T +
0 0 0

§ 0T 4 (5,

(13 A)
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n = aﬂ? - 330?[E] - aﬂﬂ?T +<{0s (14 A)

Eoo ()
T* = ae? + aee?[E] + 9T + 2, 3‘:’%‘1)[131] + ah?;D[h] +<{>, (164)
0 i=1
and
k0
q* = >, 92[E] + 3,90h] + <> (16 A)
i=1 0
It is found that in (13 A)—(16 A) C has been replaced by the cor-
responding strain tensor E (see (45)) and ¢ has been decomposed into
$=0+1T, (17 A)

where @, is the static part and 7' is the infinitesimal dynamic part of .

Thereafter, through use of axiom E, the relations (52)—(53), and
the Laplace transformation (54), the following relations are obtained
for the (Laplace transformed and spatial) stress tensor T and the heat
conduction vector ¢ in isotropic and transversely isotropic symmetries.

— Isotropic symmetry:

I ~ ~
T — ‘%" — - opd — YT 4 Atrel + 27ie - <> (I8 A)

and

Q=3 T +<>. (194)

In (18 A) and (19 A) p,J is the hydrostatic tension, p is the stress
temperature modulus,  is the heat conduction modulus, and 1 and &
are the Laplace transformed stress-strain moduli given by

E 13
A= l—poJerl.-p" and ﬁ=ﬂ+po+21/w"- (20 A)

— . Transversely isotropic symmetry:

1 - -
T — % — w3 pl — I+ X @ xY)T + X ® X(Fe, + Je))

+ X ® a, + a, ® x)2ae™ + a, ® a, [a*¥(X'e + Te,,) (21 4)

+ 2p'e] +
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and
q = %D+ T, + (), (22 A)

where y and y’ are the stress temperature moduli, » and »' are the
heat conduction moduli, and

k k k
=+t 2 b0’ A=2—pot 3 2", ¥ =2 —po+ 3 2ip'

. . . (23 A)
fh= i~y + _zlﬂipi and u'=p' -+ p, ‘I‘Zl i v’
are the Laplace transformed stress-strain moduli.
2. Memory model:
In this case the model is characterized by the responses
o . ) . o
T = FT(C,C,...,C,9,%,...,9,h, X)FT
\ (x) . (0]
q =F4Cc,Cc,...,¢,9,9,...,9,h,X)
. (k) . U]
e =éC6,C ,...,C0,9,0,...,9,h,X) (24 A)
Q] . 0]
n=79C,C ,...,0,9,¢,...,9,h,X)
\ ®) . 0]
p=%C,C ,...,C,9,9,...,9,h, X).
Because the responses have been defined on the product space
H, = U (I(V,5 V) % U R XV, (25 A)

only a few modifications to the previous discussion on the first model
are needed to show that the infinitesimal responses v ,#n, T*, and q*
around the element (equilibrium state)

IITHZ(I,O,...,0,’19‘0,0,...,0,0)€Hk, (26A)
0
are of the form

tg) + @ 9[E] - alﬂg)T +3 9&.';7[13 , E] 4 aﬁﬂ?[E]T
0

I

k4

. (27 A)
+ %%M:TZ +<0,
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k . (U]
n = - aﬂ? — aEﬂ?[E] - aﬂﬂ?T - .Zl a(;)"o]D[E]
‘ o - (28 A)
-2 6‘2370T — By molh] 4 <
. . i i E o om O
T%ﬁm+%ﬁm+@ﬂT+Zwmm
] 0 i=1 0
! " (29 A)
+ > T, + 8,Tph] + (>,
i=1 0 0
and
E () ! O]
q* = 21 af?g[E] + 21 ag’%T + opafh] + <> (30 A)
i= i= Q

In the same way as previously (in model 1.) it may be shown that the
Laplace transformed forms of T and ¢ are, in the spatial coordinate
system and in the two symmetry classes, respectively:

— Isotropic symmetry:

I o
T=%—u°axp01—)~/TI—l—ltreI—l—2ﬁe—{—(> (31 A)
and
q ==, T + <5, (32 A)
where the other moduli are the same as in (18 A)—(19 A), except that
4
y=v ‘}“_Zl yip - (33 A)

— Transversely isotropic symmetry:

I 8 «
T = %‘ — u- ol — (1 + X° ® x%)T + X° @ x(fe,, -+ Ae))
+ (0 ® a, + a, ® X2 + a, @ ala(Ve) + Je,) -
+ 2p'e’] + (O
and
q = (d + X ® x%)3 T + >, (35 A)

where the other moduli ave the same as in (21 A)—(22 A), except that
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[ ]
P=v+ 2 0t and ¥ =y + 2. 77’

3. Memory model:

In this model the responses are of the form

o . ] . ® . (m)
T = F1(C,C,...,C,9,9,...,9,h,h,...,h, X)FF

. *) . U] . (m)

qQ =4c ,¢,...,¢,¢,9,...,9.h,h,...,h,X)
, (&) , U] . (m)

e =&C ,C,...,C,92,9,...,%,h,h,...,h,X)
. ®) R 0 . (m)

n =06 ,C,...,C,9,9,...,9,h,h,...,h,X)
® 0] (m)

p =¢C ,C,...,,¢,9,...,9,h,h,...,h,X)
and are defined on the product space

Hy,, = WL(VI; V) x TT R, X TT V..
A I

m

The infinitesimal responses around the element

Hf:fm.:(I;O,---,O,ﬁ’o,o,...,O,O)EHM,"
0

are obtained basically in the same way as before. Thus,
v = Z" + 0gP[E] -+ 0,97 - & aee?[E » E] 4 0,7 [E]T',
0 0 0
+ 5 059912 + (>,
0
) i i Eo 0 PR
M= = O — OeoVIE] — 99T — 3, OnolE] — 3 oyl

i=1 i=1

m . (i)
— Zﬂ 3&’?D[h] +<>,
. . N ) koo ) NI
T* — aﬁzé; + 0, gB[E] 4 0g49T + >, 09TH[E] + > 0PT,T
0 0 i=1 0 i=1 1]

mo (i)
+ 2 00Tyh] + <,

(36 A)

(37 A)

(38 A)

(39 A)

(40 A)

(41 A)

(42 A)
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and

k

Z ’)Q"[E] + Z 3"’<1*T + Z a(‘)q [h] + <0 (43 A)

The Laplace transformed forms of (42 A)-—(43 A) are, in the spatial
coordinate system and in the two symmetry classes, of the form —

— Isotropic symmetry:

I
T_%_u 8xp01——yTI+ltTeI+2‘ue+<> (44 A)

and
q =T+ (), (45 A)
where the other moduli are the same as in (31 A)—(32 A), except that

%=+ > up. (46 A)
i=1

— Transversely isotropic symmetry:

I
T = %’ —u- d,pd — I+ x° Q@ x%9')T + x° ® x%Be,, + 7e7)

+ (0 ® a, + 8, ® %) 2™ + 8, @ a, [@*(Te + Je,) U7 4)
+ 20 + (5 |
and
= (@A +xQx%)0,T + <>, (48 A)

where the other modull are the same as in (34 A)—(35 A), except that
now

% =%+ > wp’ and % = x4 > xp'. (49 A)
i=1 i=1

Appendiz B

Energy equation for infinitesimal deformations: After h has been set
as zero in the energy equation (99), it follows

06 = % tr (T*6) - divy . (1B)
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Since ¢ has been defined by

e=1wy 4 9y,
the (material) time derivative of ¢ will be
g=1p+ Ty + 9, (2 B)

where the relation (17 A) has been used for 4

Differentiating the infinitesimal relations for u obtained in Appen-
diz A with respect to time it may be shown that in all the memory
models

¢=6E?[E]+aﬁ?i'+<>. (3B)

In the same way, using the resnlts of Appendiz A, it may be
shown that
Ty = — 09T + < - (4 B)
0

The last term on the right-hand side of (2 B) has the three different
expressions given below, in accordance with the memory model used.

In model 1:
Py = — ﬁoaﬁﬂ-‘z’m] — ﬁoaw’g’T + {05 (6 B)

In model 2:

(i+1) i+ l)

ﬁn——ﬁaﬁw[m—ﬁo ,,WT D Z ot nD[E]—ﬁ Z oy T

=1 0 (6 B)
— ﬁoamgp[h] +<{0s
In model 3:
. . ¢E+1) i+1)
I = — ﬂan#?P[E] b, aﬁﬁwT — ¥ z o 77D[ E]—1, 21 31(;);71) T
(E4+1) B (7 B)

— % Z ahnp[h] + <0

Hence, instead of &, the relation (2 B) is substituted together with
(3 B), (4 B), (5 B), (6 B), and (7 B) into the left-hand of (1 B), while
the infinitesimal relations for T* from Appendiz A, together with
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the relation obtained differentiating (45) with respect to time, are
substituted into the right-hand side of (1 B). In this way it may be
shown that the Laplace transformed form of the energy equation (1 B),
in the spatial coordinate system and in the two symmetry classes, takes
on the following forms:

— TIsotropic symmetry:

divq = ggptsT + ﬁopof divu 4+ <>, (8 B)
where for the memory model 1:
¢p = ¢z and ');/ =y (9 B)
and for the memory models 2 and 3:
tp = 05 + 2’1 cp' and 0? =y + gkl 7' - (10 B)

— Transversely isotropic symmetry:

divq = gppesrT + dypydivu + ﬁop?:;’um + <5, (11 B)
0

where for the memory model 1:

€g =Cz, y=7y and ?’:y’ (12 B)
0
and for the memory models 2 and 3:

! k k
Gp=op+ Zops F=y-+ 3 et and ¥ =y + 35 (13B)
i 0 i= =

=1

Appendiz C

Formal solutions of monhomogeneous vector differential equation with
homogeneous boundary conditions: In mathematical form the problem
is to solve

dy

o =AYy +T Weyo+ Waye =0, (1)
where ¥,f,vy,, and y, are certain column vectors and 4, W,, and
W. are square matrices.
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Since the solution of the homogeneous initial value problem

dy
o Ay ylre) =y (20

is needed in what follows, this is studied first in some detail. Under the
assumption of uniqueness, the solution of (2 C) may be regarded as a
linear mapping Y (r,7,) from the set of initial vectors {y,} into the
seb of solutions {y(r)}. In other words

yr) = Y(r, 7o)y, - 30)
The initial condition of (2 C) demands that
Y(g,rg)=1. (4 C)

3
Because (3 C) is valid for all y, €{y,}, it follows from (2 C) and
(4 O) that the fundamental matrix ¥(r,r,) satisfies the initial value
problem
ay
W:AY; Y(rg,r) = 1. (50

As to the Green's function of (1 C), the treatment here follows Cole
[7]. Accordingly the initial value problem

dy
= AV T vl = (6 C)

is solved first by the method of the variation of constants. For this
purpose (3 C) is differentiated with respect to r under the assumption
that g, is a certain function ¢(r) of . In this way

y=Yc¢+ Yc'.

From the expression above, together with (5 C) and (6 C), the explicit
expression below is obtained for ¢ as a function of 7 :

o) = v+ [ 7). (10)
Consequently (5 C) takes the form .

yir) = Ty + / Y)Y () (5)ds . (80)



Oscillations of a thermoviscoelastic, selfgravitating, 57

Thereafter substitution of (8 O) into the boundary conditions of (1 C)
gives for y, the expression

Yo = — / DYWL Y, Y (s)f(s)ds (9 C)

where D1 is the inverse of the boundary matrix
D=W,+ W7Y,. (10 C)
Thus (8 C) and (9 C) together give

y = — f YD W, YY" (s)f(s)ds + / Y)Y Ys)f(s)ds. (11C)

The final form (11 C) is obtained after some manipulation and use of
the identity

DD1=1T.
Thus

a

ylr) = f G(r, 8)f(s)ds (12 C)

To

where
YD WY (s); r=s

G(r,s) = (13 0)
— Y@ DWW Y Y (s); r <

is the Green’s matrix of the problem (1 C).

Some results concerning the fundamental matriz of the adjoint boundary
value problem: From (152) together with (5 C) it may be readily verified
that the fundamental matrix of the adjoint homogeneous boundary
value problem (152) satisfies the initial value problem

i s
E—:——ZA,ZO———I (140)

From (5 C) and (14 C) one may verify the simple relation
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aA(ZY)
dr

=0 (15 C)
#

between the fundamental matrices ¥ and Z%. To get the relation (15 C)

in a more suitable form, it is integrated from 7, to «. Thus

®
ZY —1. (16 Q)

Using (16 C) the Green’s matrix (13 C) can be represented in its final
form, which is

Y(f‘)D—lﬂfoz(s) ; r<<s
Ar,s) = " . (17 C)
— Y(r) D2W Y Z(s); r<s

An integral equation for ¥,: Equation (151) may be stated in the form

a4y,
dr

== A:l/"v + (AH A)yll ; I/VO?/nO + T/V(ly"(l - 0 3 (18 0)

where the subscript n relates to the eigenvalue P, . With the aid of
the Green’s matrix (17 C) it may be veufled that (18 C) is equivalent
to the integral equation

a

Y1) = / G, 5)(A,(s) — A(s))y,(s)ds . (19 )
Since y,= Y,y,, it follows from (19 C) that the fundamental
matrix Y, satisfies the integral equation

a

Y.(r) = /G(7' , 8)(4.(s) — A(s))_Y,, (s)ds . (20 C)

To

Focus mechanism expressed by jump relations: This problem is stated by
(148) and (151) as follows:
dy
o =AY Woto + Wy, =0, [J]—./a“:? (21 C)
For the solution of (21 C) two fundamental matrices are used: the
first is Y~ (r) below the focus line » = », and satisfies the initial con-
dition Y~(rg) =1 at r=1r,, while the other fundamental matrix
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Y+(r) is selected above focus line so as to satisfy the initial condition
Yrer) =1 at r=r, Since ¥~ and Y+ are fundamental matrices
of the same differential equation, they ought to be connected by

Y+ = Y—O, (22 C)

from which the constant C is determined by the condition Y] =1
to be

C = (¥, (230)
Since
vo =Yoo (24 C)
it follows that
yo = (¥)) 7y (25 C)
At the free surface the solution is
gt = Yiyf = Yhyr + Yoy, (26 C)

where the jump relations from (21 C) have been used.
The boundary conditions of (21 C) can now, with the aid of (22 C),
(23 ©), (256 C), and (26 C), be expressed as

mw+m%=mw+Mﬁw+Mﬁmﬁww, (27 C)

s

from which

yr = — DI'W.Y (Y)Y (28 C)
where
D=W,+ WY, .

Consequently the solution below the focus line is obtained as

y=(r) = — Y- (DT WY (Y ()Y (29 C)

s

Tor the solution above the focus line, it is found that
yHr) =Yt @) g + Yy, (30C)

from which, after some manipulation and use of (22 C), (23 C), (24 C)
and (28 C), it follows that
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yrr) = Y () D' Wy (Y (s) "y . (31 0)

s

Consequently the Green’s matrix of (21 C) is, according to (29 C)
and (31 C), given by

#
Y~ () D'WoZ(s); > s

Gr,s) = " s (32 C)
— Y (DWW Y Z(s); r<s

and accordingly the solution of (21 () is expressed compactly as

yir) =G(r,s)y. (33 C)



