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Abstract

The Thomson-Haskell matrix method will be extended to
the case where the elastic parameters u(z) and g(z) can be
in the layers and in the halfspace certain simple functions.
Then the method is applied to the case where u(z) and g(z)
are piecewise linear functions or constants.

The problem is to calculate the eigenvalues of the Love wave ope-
rator consisting of the differential expression

d dv
@(ﬂ(z) 3;) + 72 (¢ 0(2) — () v == 0 (1)

and the boundary conditions

dv _
,u(z)%=0,z=0 )

v—>0; 2— o
The method developed by W. Tmomson [3] and N. Haskgry [1]

for calculation of the spectrum of the previous operator uses piecewise
constant values of u(z) and g(2). For some purposes, however, it may
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prove useful to make a slight generalization of the above method, using
for wu(z) and p(z) piecewise simple functions. This means that we
substitute w(z) and p(z) in the j:th layer, for every value j=1,...
n -+ 1 where n -+ 1 means the halfspace, by approximations for which
it is possible to solve the equation (1) in closed form.

There are (n 4 1) differential equations like (1), one in each layer
and one in the halfspace. In order to make the problem determinate,
the boundary values (2) and the following conditions (the continuity

dv
of v and u(z) 7 on the j:th boundary) are used:

V1 = Y ; on the (j — 1):th boundary (see Fig. 1) and

v g , : (3)
M- g, = Hi g, > On the (4§ — 1):th boundary (see Fig. 1)
In (8) v,y and v; are the solutions of (1) for the (j — 1):th and
(4):th layers respectively. u;_; and p; are the approximated shear
modules in the above-mentioned layers. When two linearly independent
solutions v;;(z , k) and vy;)(z, k) have been found for the j:th layer,
the general solution can be written as follows:

;)@ 5 k) = ey Vi@ > k) + oy V(2 5 K) (4)

Mmoo e

J#

Fig. 1.
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For the tension in the layer we get

dv(z , k) dvyn(z , k) dvy (2 , k)
M(j)(z)—dz— = Cy(j) ui(2) % + Cz(j)Mj(z) : dz (5)

(4) and (5) can be represented as a matrix equation
mi(z , k) = Bjz, k) ¢ (6)
where the column vector =;(z, k) is
vz, k) .
iz , k) = dvi(z , k) (7)
W) —
The matrix Bj(z, k) has the elements
Bn(zm , k) = 'ul(j)(z , k) Blz(j)(z , k) = vz(j)(z , k)

d’(}‘(z,k) dU(Z,k)
Bug(e s ) = @) =g and Bugy(e, b) = ) =g, (8)

Crs
Ca(j)

The boundary values (2) and (3) are also expressed in vector form as
follows:

And the vector

(1)1(0 , ]c))
w0, k) = (10)

0
w;_1(2, k) = m(z,k); on the (j — 1):th boundary, and (11)

0
Cn.+1 - ( ) (12)
Cofnt1)

If vy y(z, k) — 0 and vy, k) —0, when z— co, then
following Thomson, the origin is placed on the (j — 1):th boundary,
with z-axes pointing downwards and x-axes to the right. Thus equation
(6) is valid on the (4§ — 1):th interface setting z = 0 and on the (j):th
interface setting z = Hj;, where Hj; is the thickness of the (j):th layer.
The result is represented as follows:
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@i(o , k) = Bj{o,k)c; and (13)
wi(Hj, k) = Bj(Hj, k) ¢; (14)
From (13) and (14) ¢ is eliminated by multiplying (13) from the

left by B;(o, k) and substituting the product in (14), and the following
result is obtained:

wi(H;, k) = Bij(H;, k) Bi (o, k) mj(o , k) (15)

Using (15) recursively and the boundary values (11), the relation
between 7,,,(0, %) and (o, k) is found to be

10, k) =B, B, _;......... B, B, r(0, k) (186)

where E; = B;(H;, k) Bi>(o, k).
From (16) and =, ,(0,k) = B,,,(0,k)c,,, the following relation
between ¢,,; and 7 (o, %) will be obtained:

B, 10,k)¢, s = Amo, k) (17)
where A =E. B, ,...... B, B,

or in component form
Co(nt1) -B12(n+1) (0,k) = Ay vfo, k) and

Cant1) Bzz(n+1)-(0 k) = Ay vi(0, k) (18)

and dividing both sides of the equations (18), thus eliminating Cont1)
and v(o, k), we get, taking into account (8), the Love wave dispersion
relation

u(0) d ”2(n+1)(0 , k) 4

Ay = s (0 1 F) Iz 1

(19)

The above method can be applied to the case where u(z) and p(z) are
linear functions of depth in the j:th layer

() = pi_y + @z —z;_y) and
0i(z) = oj-1 + bi(z — z(j—l)) (20)

where 7;_; (and g;_;) are the values of u(2) (and g;(z)) on the
(§ — 1):th interface, a; (and b;) are the values of the direction coef-
ficients of p;(z) (and pj(z)) in the j:th layer and #;—1 1s the depth
of the (j — 1):th interface.
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The differential equation (1) in the j:th layer will have the form
d? dv o/
(/"j——l + @iz — zj—l) 22 + a; d—z + k2 (c @j—1 — ,“j_l) + (21)
(%) — ) (z — 2;_x) v = 0

According to SnATER [2], the solution of (21) is in confluent hyper-
geometric functions

RVARR
—k l—e2-= 2z
vz, k)=e 9 [eyy P(d,1,az+b) Cagj) Yd,l,az-+0)] (22)

;-1 E

202 .
B p; v pi1 o

where d = 1/2 — 24 V

b.
2k|/1—c2—’

a.
a b = ————— [+ 4 (2 — 2]
J

The stress in the j:th layer will have the form
(23)

d?) —k/\/l—cgii.z b
. “J .

d_z]= (1 + aj(z — z;_1) Je [Cl(f)<_k 1 —‘ng_ P(d,1,az+b) +
j

ZQ(d_I—1:2,az+b))+62(])<—k]/ 1_62£JSU(d,1,az—|—b)—ale(cZ—}—
4

, 2, az —}—b))}

From (22) and (23) the following elements of the matrices Bj(o, k)
and B;(H;, k) will be obtained:

Bll(j)(o9k) =0 (d,1,0)

BlZ(j)(O)k) =0 (d,1,0b) (24)

Barg0:8) = (-1 — ) — b |/ 1 — D (d,1,0)+ad B+ 1,2,0)
aj



40 P. Saastamoinen

Bayyy(0, k) = (51 — @iz 1) — k ]/1 Y ,1,0) —wd P @+1,2,0)
a;
and
&V l—c’bJH
Buyy(Hj, k) = e @ (d,1,aH; + b)
—k \% 1— czb]
Byyj(Hj, k) = e T (d,1,aH; 4 b)
(25)
-k V 1_621-7:Hj b
aj B .
B21(j)(Hj , k) = (#i—1 + ai(H; — 2_1))e {_ /1 — cz_(i
! j
Od,l,al;+0)+adD(d+1,2,aH; | b)
]
VeV, .
4 . .
Bygy(Hj s k) = (w—1 + a(H; — 2_1) )e [~ r]/1— Gggj
J

Y(d,1l,ald; +0b) —ad ¥ (d 4 ].,2,“Hj"|‘b):l

Because the expressions (24) and (25) have a rather complicated
structure, the layer matrix will not be given explicitly but instead a
procedure which can be programmed for a digital computer will be
sketched out. The elements of B Yo, k) are the following:

B22(j)(0 > k) 1 -B12(j)(0 , k)

Bripo s k) = det Bj(o , k)’ Bl B) = = 3op Bj(o, k) (26)
_ B21(j)(0 s ko) _ Bll(j)(o , k)
Bup(©:®) = ~ 3ot B0, 1) 4 Bui®. B) = o o b

where  det Bj(o, k) = Byy;(0, k) Bag)o, k) Buyy(o, k) Bayyo, k)
and the elements of E; are
By = Bug)(Hj, k) Bl_l(lj)(o , k) + By (Hj , k) ﬁ(lj)(o k)
Brygy = Bugy(Hj, k) By (0, k) + By (H; , k) B0, &) (27)
EZl(j) = 21(1)(H1 ) ]") 11(j)(0 7‘3) + B22(j)(H]" k) Z2(j)(o k)
By = Bug(H; , k) B0, k) + Bosg(Hj 5 k) BZZ(J)( » k)



On a generalization of the Thomson-Haskell matrix method 41

In this connection, two remarks may be made concerning the above

precedure. Firstly, when d is complex and az |- b is imaginary <that is,

when ¢ << l/ %), the solution w;(z, k) will also be complex and we
) :

shall have to develop a subroutine to calculate the product of the two

complex numbers. Secondly, when j=mn+ 1 (the halfspace) and

¢ < |/ %1 , the asymptotic behavior of the solutions will be

"n+1 (D(d 1,az -+ b) ‘——> o, when 2z-» oo, and (28)

-—k'\/l—czbn—l_1 z
e “atl YP(d,1,az-+b)|—0, when z-— oo

In the second case, the method is applied to the case where u(z) and
o(z) are constants p; and g; in the j:th layer (the original Thomson—
Hagskell case). The differential equation (1) will be

d2v c? )
2 —_ =}
=+ k (ﬁ, 1) =0 (29)
where f; = fo’:
Qj
The solution of (29) will be
vi(z, k) = ey €FTET A oy e TAI (30)
[ 1/
] I — 1, when ¢ << §;
where 7g = !

c2
) 1——137,Whenc<ﬂj.

J

The tension in the j:th layer will be

dvi(z , k) . " . i
By = 8 Ry i oy €T — ik g gy €T (1)

From (30) and (31) the matrices Bj(o, k) and Bj(H;, k) will be
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1

1 ik 7 /2

—1 . B 15
B (o, k) = . (32)

ik

and

e g Hj e~ gy

ByH; , k) = o I ” e (33)
U6 Tog; p; €7 RIS — Al T e piHj

The matrix B, = ByH,, k) Bj‘l(o , k) has two different forms, according
whether =, is real or imaginary. Namely, when 7g; s real

b H sin k s,; H,
B = | % "t kg, 1 (34)
— kmg; p; sin kg H;  cos kg H,

and when =, is imaginary

— sinh k 7oy, H,
k 7y 7, (34’)
kg p; sink kmg, H,  cosh ki, H

B — cosh knﬂjﬂ

Now, it is possible to express the terms of the dispersion relation
(19) explicitly, when u(z) and p(z) in the layers and in the halfspace
are either linear functions or constants. Especially when in the half-
space, u(z) and p(z) are linear functions

lun—l-l(z) - /'Ln _I_ @ ~[—1(Z n) a,nd Qn-l—l(z) = On + bn+1(z - Zn) .

From (20) and (25) we get
A21 [kzcz (Qn n—‘—l l/ n+1:' y'[[(d + 1 2 b)
All - n+1 n an+ n4-1 T(d ’ 1 3 b)
35
—kl/l—czb"+1. 9
a’n-{—l
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Conclusions:

1. According to the above method it is possible to fit u(z) and p(z)
more accurately to the real situation. Especially, the influence of the
deep structure and the regions where wu(z) and g(z) change rapidly
can be taken into account better.

2. A drawback of the method is the labour involved in the cal-
culation of special functions. But that ought to be remedied by the
use of a fast digital computer.
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