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REMARKS CONCERNING THE PRESENT POSITION
OF THE POLE

by
Warter H. Muxnk

Scripps Institution of Oceanography, La Jolla, Calif.*

Absbtract

The distribution of continents and oceans largely determines
the inertia of the Earth’s crust. The axis about which the moment
of inertia is a maximum pierces the surface 400 miles southwest of
Hawaii. This is the position the north pole would eventually
occupy provided (1) the equatorial bulge is not »frozen» but
will adopt (in a time of order 7) the shape appropriate to diurnal
rotation, (2) oceans and continents are isostatically balanced, (3)
the distribution of ocean and continents remains fixed relative to
one another, and (4) no other comparative asymmetries in the
distribution of matter exists. The rate of polar migration
depends on 7. BonpI and Gorp have interpreted the damping
of the 14-month wobble in terms of plastic flow in the Earth’s
mantle, and obtain 7=10 years. If this value were applicable,
then under the foregoing assumptions the travel time of the
pole to Hawaii is 100,000 years, a rate of travel 1000 times the
upper limits given by astronomical measurements during the last
sixty years and by paleomagnetic evidence over the last 10
million years. For earlier times the paleomagnetic evidence
indicates a direction opposite to that derived here. This leaves
some questions to be answered.

* Contribution from the Scripps Institution of Oceanography, New Series.
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Introduction

The usual starting point of any discussion on polar wandering is to
presume the Earth to be in equilibrium until suddenly disturbed by some
implausible rearrangement of matter. The ensuing motion of the pole
is then computed for an Karth made of material that can be modeled
by appropriate combinations of springs and dashpots. Finally, the com-
puted polar path is found to be in agreement with a bewildering array
of paleoclimatic, and more recently paleomagnetic, evidence.

It may be pertinent to inquire whether for any prevailing Earth model
the present distribution of matter is consistent with the present position
of the pole. For example, as a consequence of Gorp’s [4] model the
pole ought to be south of Hawaii. There are ways out of this dilemma,
as always, and these may provide some significant geophysical restraints.

The starting point of Gorp’s theory is that the dimensions of the
equatorial bulge are those appropriate to an equivalent rotating fluid.
This suggests that the bulge adjusts itself to diurnal rotation no matter
what the orientation of the axis of rotation may be. If the bulge does
not offer any long term stability in the position of the pole, what does?
The first thing that comes to mind is the distribution of continents and
oceans. Compared to the equatorial bulge these are tiny markings on
the surface, still they might be the determining factor if the continental
distribution is permanent and the bulge appropriately plastic. A rapidly
spinning rubber ball would orient itself relative to the rotational axis
in accordance with tiny surface markings.

Principal axes of the crust

The problem then is to determine the principal axes of the Karth’s
crust, neglecting the equatorial eccentricity. If the continents formed
a ring around the globe, then obviously one principal axis would be at
right angles to this ring, and the continents would be on top of the
equatorial bulge.” The actual distribution is too complicated to obtain
an answer by inspection, but we might guess that the pole should be
in the Pacific. This turns out to be a good guess.

Let 2,9,z be associated with the present geographic coordinates:
% is drawn from the Earth’s center through the equator at the meridian
of Greenwich, y intersects the equator 90° east of Greenwich, and z
is through the north pole. Moments A,B,C and products D,E,F of
inertia are then given by
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4 = Zm(y2+22) ele.; D=2myz eic.

To evaluate 4,B,...F it is convenient to switch to the spherical
coordinates r,0,0, where @ is the colatitude and @ the east longitude.
Now suppose that the variation of density with depth is uniform for
all continents, to be designated by o'(r), similarly o(r) refers to oceanic
sections. The excess of continental over oceanic inertia equals

A=[[[(0'—o)r*(sin20 sin2®-|-cos?@) sin O dr dO dd—=1Ia
I=[(o"—p) 7% dr, a= [[(sin?@ sin?@-|-cos2@)sin O dO do
with @ evaluated over continental parts of the Earth. Similarly B=17 b,
... F=If{. We may visualize 4...F as the inertia of continental
veneers glued on the surface of a sphere.

The problem is to find the principal axis 'y ,2, ie., the axis for
which the products of inertia

(1)

D'=Xmy' 2 etc.

vanish. The direction cosines of the a’,y',2’-system relative to the 29,2
system are defined by the scheme
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The solution is

ai~ve(b—A)+-df, Pi~d(a—)+ef, yi~(a—A)b—2A)—?

with the proportionality factor determined by o;?4B2+y2=1. The
three principal moments of inertia are A'=Ia’, B'=I¥, ('—=I ¢,
where A=a’, 1=b’, A=c’, are the three roots of the cubic equation

l A—a f e

f A—b d =0

[ e d A—c
The moment of inertia about amy axis with direction cosines 0y, 09,005
relative to the principal axes, is I g, where

q(oy,t,05)=0' i} +-b'o3+-¢'t . (2)

The results of numerical calculations are given in Table 1..7 REVELLE
and I have previously evaluated the necessary integrals over all oceans
using 10° X 10° grids, and the continental values in column (1) were found



338 Walter H. Munk

by subtraction. Recent seismic work has shown that the dividing line
between continental and oceanic structure corresponds roughly to the
1000 fathoms depth contour rather than the coastline. The values in
the second column refer to these enlarged continents. After my cal-
culation had been completed, my attention was drawn to the work of
MrrankoviTeH [10], which contains values for a 20° X 20° grid bounded
at the coastline. Milankovitch’s values are in column (3). I think his
values for a,b,c are too large. The quantity (a--b4-c)/8n designates
the fraction of the Earth’s surface covered by continents. His values
give 0.41. The accepted ratio is 0.29.
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TFig. 1. Standard continental and oceanic sections. The continental section consists
-of crust masterial of density g.=2.75 g em™ and thickness h’,=30 km. The oceanic
:section comnsists of ocean (g,=1.025 g em™3, ho=4 km), crust (9,=2.756 g cm™,
k=6 km). The density of the mantle is 9,,=38.26 g cm™3, and hp=19.1 km,
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In all events there is an over-all agreement between the three calcula-
tions. The axis of maximum moment of inertia has a pole near Hawaii,
and the axis of minimum moment has one near Archangel not too far
from the actual pole. The results could hardly be in lesser accord with
the present position of the pole.

MmmankoviTor did not attempt to evaluate the integral I. On the
basis of available seismic and gravity work it is now possible to do so.
Worzrr and SmursrT [14] have proposed standard continental and
oceanic sections. I have used a slightly simplified model (Fig. 1) by
omitting the sediment layer. Continents and oceans are in isostatic
equilibrium.

Qch,c = {)uh'o_l_gchc_l_gmhm . (3)
The elevation of continents above sea level turns out to be
2=k c—(ho-+-h+hm) = 0.9 km (4)

which is an acceptable value.

Table 1. Moments and products of inertia, a, b, . . . , e, the three principal moments

a', b’y ¢/, and their northern hemisphere poles for continents bounded by the coast

line, the 1000 fathom line, and according to the calculation by MILANKOVITCH
and IAUBRICH.

coast line 1000 fathoms | Milankovitch Haubrich

a 2.757 3.473 3.700 4.553

b 2.571 3.137 3.442 3.924

¢ 2.234 2.692 3.038 3.665

d 0.202 0.192 0.191 0.412

e 0.172 0.161 0.240 0.199

f 0.0725 —0.090 —0.002 —0.056

a’ 2.809 3.547 3.790 4,569
(0] 75° 76° 70° 86°
176 199° 192° 178°

b 2665 3.152 3.491 4.952
2] ! 66° 76° 76° 124°
273° 293° 287° 73°

¢’ 2.088 2.603 2.899 3.321
e 29° 20° 24° 36°
56° 66° 49° 69°
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The evaluation of I (equation 1) involves third order approximations.
First order terms cancel because the crust is thin compared to the radius
of the Karth; second order terms cancel because of isostacy. Details
are cumbersome and uninteresting. The result is

I=2r3(0h' 2—0mhm®— 0" — 0o —2 0Pohts—2 0htuftm— 2 0 Prohc)
=1.78X10% g cm?

where 7, is the Rarth’s radius.
Figure 2 shows the moment of inertia of continents (the g-topography,
Eq. 2) about any pole, in units of I. The topography has a maximum,

&2

Fig. 2. Inertia of continents. The base chart is in polar coordinates with respect
to the principal pole ¢’ (near Archangel). Colatitudes @ with respect to ¢’ are
equally spaced circles (not shown), with the equator (¢#=90°) through the Hawaii
and West Indies poles. The light lines are co-ordinates relative to the pressnt pole.
The heavy lines give relative moment of inertia of the crust, ¢, about any axis;
thus ¢=2.70 about the present axis. The line through the present pole at right
angles to the g-topography represents the probable path of polar wandering.
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a’, at the Hawaii pole, a minimum, ¢’, at the Archangel pole, and a
saddle point at the West Indies (value &’). For comparison, we have
the following principal moments of inertia:

Barth ... .. .. o i I, =0.8X10% g cm?
Equatorial bulge .............. I, =3.0x10*g cm?
Continents (isostatically balanced) @’ =0.6x1040g cm?

The calculations of Haubrich

After reading a rough draft of this manuscript, Mr. Ricaarp Havu-
srIcH felt the need of treating the more general case of variable
continents. He has permitted me to report his resulfs here. Haubrich
adapted the model of WorzeL and SEUrBET [14], including the layer
of oceanic sediments. When the continental elevation is at sea level
(2=0) the density and thickness of the continental crust are 2.84 g cm=3
and 32.8 km respectively.

For an Airy-type compensation he solved equations (3) and (4)
for &', and %, as functions of continental elevation z, and evaluated
I(z) from (5):

zin km 0 2 b 1 2 4
I in 10* g cm? .19 21 .25 .30 43 75

For a Pratt-type compensation k,, k. and k,, are fixed, and &', is deter-
mined from equation (4). The right side of equation (8) is now written
o'.h'. instead of o/, and g’ is evaluated:

zin km 0 2 5 1 2 4
g.ingem™3 284 282 280 276 2.68 2.52

For z=0 the models are identical; for z—=1 km the Pratt-type compensa-
tion gives I=.46X104° g em? compared to .30 x 1040 for the Airy-type
compensation, and 0.18X10%° from my calculations with z=0.9 km.
Some of the discrepancy between Haurrice’s and my calculations arises
from the difference in the model; still the discrepancy is larger than I
had suspected.

The tensor of inertia is evaluated from integrals such as

A= [/I(0, D)(sin?@ sin? P-|-cos? O)sin O dOAD

taken over continental parts of the Earth. I(©,9) is the value of I for
a mean elevation 2(©,0) of a 10°X 10° square. It is no longer possible
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to factor 4 into a product of two integrals, 4 =1a as in the case of uniform
continents (Eq. 2).

Havusricw’s results for the Airy-type compensation are included
in Table 1. The pole of maximum inertia is still in the central Pacific,
but 10° further south than I found. The pole of minimum inertia is
displaced towards the Himalaya complex in accordance with the larger
moment of intertia accorded to high-lying regions. For a Pratt-type
compensation the discrepancy between the uniform and non-uniform
continent models would be larger still.

Fugrther remarks concerning principal axes

The differences in the computed positions of the axes for various
models give some indication of the limits placed by our present knowledge
of the crust. Seismic evidence has not made a clear-cut decision between
the two basic types of compensation. The shallow Moho under the
Colorado and Mexican plateaus favors a Pratt-type compensation;
the root beneath the Appalachians speaks for an Airy-type compensation.
No allowance has been made in any of the models for the large shoal
areas of the oceans (subcontinents) whose structure is intermediate
between that of oceans and continents.

The following two examples serve to bring out explicitly the role
played by major features. An icecap (density 0;=0.9 g cm™3, thickness
hi=3 km) covers Greenland. As a result of the ice load the crust is
pushed downward into the mantle. Assuming Airy-type compensation,
the products of inertia are

D;=1I'd; E;=1I'e;, where

-

I'=g;hia*t, 1=4—{1— — ) +2h;{1—— | =0.003

a Om Om

with ¢ designating the isostatic factor. For Greenland bounded at the
coastline d;=——0.010, ¢;—0.011. The resultant products of inertia are
D;=—1.33x10% g cm? HK;=147x10% g cm? compared to D=Id=
3.4 1038 g cm?, =2.9X 10%8 g cm? for all continents. Clearly the inertia
of the Greenland icecap is negligible, and no reasonable icecap can
balance the torque exerted by continents. The Himalaya complex raises
3x102g of matter above normal continental height, and the Andes
about 1x1022g. The Alps are negligible. The products of inertia of the
incremental masses, assumed isostatically compensated, are 1.3 X 10%7g
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em? and 0.4 X 1037g cm? respectively. These values are sufficiently large
compared to the products of inertia of the crust to account for the order
of difference between HaUBRICH’s calculation and mine (Table 1);
still the over-all result as portrayed in Fig. 2 is substantially correct,
the contour interval being of the order 103%g cm?2

Gorp has pointed out that a polar ocean provides a polar trap.
If the pole were to move towards shore, additional ice is deposited there
which would eventually drive the pole offshore. He suggests that the
Arctic Ocean may account for the apparent stability of the pole over
the last few million years. The foregoing calculations indicate that the
effect of an icecap is relatively small.

The path of polar wandering

Burgers [2] and Incris [6] have treated the dynamics of polar
wandering for an elasto-viscous Earth: this corresponds to a spring and
dashpot in series (Maxwell body; ScEEIDEGGER, [12]) so that for
disturbances of short period the elastic properties dominate, whereas
under prolonged stress the body yields like a fluid. For a sudden upheaval
in the crust (say) the solution consists of oscillatory terms that are damped
like e~*%, together with the velocity components

7y B " r, D
T 0—4° =T 0—4 (6)

of the pole’s wandering toward Greenwich, and 90° East of Greenwich,
respectively. The moment of inertia of the equatorial bulge is C—A4
and large compared to B—A. The principal pole of the Harth (not the
erust) is at

lp: _'roE/(O_A): Mp== ——7"D/(0—A)

with respect to the coordinate system used to compute the inertial tensor.
As the pole of rotation wanders, the position of the equatorial bulge
changes with respect to the original coordinate system, and this affects
the products of inertia D and E, and hence the position of the principal
pole. Polar wandering continues until the principal axes of the Earth
coincide once more with those of the crust. The reader is referred to
Buraers and Inaris for a mathematical treatment, and to GoLbp who
anticipated these results by qualitative reasoning.

The derivation of (6) is based on the principle of conservation of
angular momentum. Products of inertia D,E are associated with the
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difference in the inertia of equivalent continental and oceanic areas.
In the case of isostatic compensation the difference is of second order;
it arises only because continents are a bit further from the axis of rotation
than oceans. It is instructive to point out that one can adopt an alternate
point of view, which is to start with the difference in centrifugal force
exerted on equivalent continental and oceanic areas. In the case of iso-
stacy this again depends on a second order effect: the centrifugal force
on continents is somewhat larger, these being further removed from the
axis of rotation. This second order force is known as the Polfluchkraft
of EoTvos. It has become so involved in speculations concerning con-
tinental drift, that it seems appropriate to emphasize that it enters
here in a more subtle way. There is no need for this force to
shift continents relative to one another, nor to slip the crust over the
rest of the Earth; rather there is a torque on the Earth as a whole which
will alter its orientation relative to the axis of rotation until the torque
vanishes. This final position corresponds once more to rotation about
the principal axis of the crust.

Polar wandering can be visualized as a slow wave-like propagation
of the equatorial bulge with respect to the Earth, much like a tidal bulge.
From the point of view of an observer in space the bulge remains fixed
relative to the ecliptic plane, and the Harth slowly turns under it. This
is not a slippage of the crust over the mantle as suggested by many
authors. Slippage would require that the thickness of a viscous boundary
layer be small compared to the Earth’s radius, whereas just the reverse
is frue.t

MirankovITeH reasoned that the pole must slide »downhilly toward
the pole of maximum inertia, that is, along a line normal to the ¢-topo-
graphy. This seems reasonable enough, yet I do not find it an obvious
result. A derivation of the path, starting with (6), is given in the
Appendix. It turns out that a path along the orthogonal is an adequate
approximation provided the damping time 7 is long compared to the
period of free nutation. The observed ratio is 8:1.

The equation of the path is simple in terms of the geographical
coodinates with respect to the principal continental axis: Let @' be
colatitude south of the Archangel pole, and @' longitude east of the
Hawaii pole. Eq. (2) can be written

1 For & viscosity ¥=10% cm? sec~! and a period 7' of only 10 years, the thick-
ness of the layer is \/ VI'[7g=10" ecm=10° times the Earth’s radius.
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sin? @' (k—sin? @')=(q¢—c')/(a’—b'), k=(a'—c)[(a’'—0").
The family of lines at right angles to the ¢-contours is then
tan ®’ cos @’ tan* @' =constant , (7)

an equation given by MinanrovircH. The orthogonal line through the
present pole is drawn in Figure 2.

The direction of polar wandering

The computed direction of polar wandering is toward the principal
pole near Hawaii. On the basis of paleoclimatic evidence which
he considered as »unzweideutigy, MmaNKovITCH drew the arrow along
his orthogonal (which does not differ too much from the orthogonal
in Figure 2) pointing away from the Pacific. JARDETSKY [7] seems to
have gone along with this interpretation. Recent paleomagnetic evidence
also indicates wandering away from the Pacific, but the evidence is
far from wunzweideutig, I think, and the time scales of the climatic and
magnetic evidence do not agree at all well. The interpretation of Milanko-
vitch and Jardetzky implies a reverse polarity, or a negative value of the
integral I. This means that the inertia of continents is less than that
of oceans in contradiction with the present isostatic model. On this basis
GUuTENBERG ([5], p. 203) has criticized Milankovitch’s paper.

However the suggestion of a reverse polarity desires further con-
sideration. In the isostatic model the inertia of the crust depends on the
second order term resulting from the slightly larger radial distance of
continents than oceans. Suppose that isostatic balance does not hold
precisely, but that there is a slight erosion of continental matter and
sedimentation on the ocean floor which is not compensated. This
represents a first order effect which might reverse the sign of I. This
is an intriguing possibility. It would place the pole of maximum inertia
at Archangel, where it is a relatively small distance from the actual
pole (though HausricH’s calculation places it further south); whereas
for the isostatic model the pole is about as far removed from the principal
pole as it can be.

For the isostatic model I=1.78x10%%g cm? How much material
would have to be eroded from continents and deposited on the sea floor
to make I=0, presuming the erosion process to be uncompensated? The
oceans occupy 2.5 times the area occupied by continents. For g4k
g cm~2 removed from continents, 0.4 g, A% g cm™2 are deposited as sedi-



346 Walter H. Munk

ments, and I is diminished by 1.4 g.4h ry*. Uncompensated erosion by
Ah=28 meters will make /=0. Hence if the elevation of continents
above sea level by 900 meters represents an isostatic elevation of 930
together with an uncompensated lowering by 30 meters, the sign of
I would indeed be negative.

What do these models imply with regard to gravity anomalies?
The simplest procedure is to take continents as elevated strips on an
infinite plane. First take the absurd example of complete lack of
compensation. If the oceans are condensed from a density g, to g,
sea level is lowered by 7%,(1—g./0.)=2.56 km, and the elevation of con-
tinents above the condensed sea is 4A=0.94-2.5=3.4 km. The gravity
anomaly over the central portion of the continent is

Ag=27 @ p.4h=0.392 cm sec™2,

where G is the gravitational constant. For the compensated model the
gravity anomaly is found by an extension of the formula given by
JEFFREYS ([8], p. 175). The strip extends from &=—1 to &é=-L. Jeff-
reys has shown that Ag is remarkably uniform except near the continental
edges, and we might as well restrict ourselves to the center, £=0. Writing
Ado=0"({)—p({) for the excess of continental over oceanic density at
depth ¢, we have

Ag =4G[fdo sin xL e %2 dr di
=4GAp cot™2 (¢/L)d¢,

4@
=2nG[dpd{ — ffAQdC .

Ag gives the excess of free-air gravity anomalies on continents over
that on oceans. In the case of isostasy, only the second term remains.
For the model in Figure 1 and for 2L=6000 km this gives Ag=—=--0.8
mgals. In the case of an uncompensated lowering of continents by
Ah=4.8 meters, the positive anomaly is annulled. Uncompensated
erosion by 28 meters gives Ag=—4.5 mgals. There may be some concern
about the thin plate model of continents, but it can be shown that little
is changed by allowing for the spherical shape. The calculations are
given by JEFFREYS ([8], 5.06) and need not be repeated here. The results
are sommarized in Table 3.

If gravity anomalies on continents were consistently higher, or lower
than over oceans, then the question of whether I is positive or negative
could be decided. Unfortunately relatively large local anomalies make
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it impossible to make this decision. Certainly the assumption of no
compensation is wildly wrong, but it is impossible to tell whether com-
pensation is by 1009, or 999%,, and this is what we need to know. JEr¥-
REYS ([8], p. 175) gives the following average values of free-air anomalies:
Continents 0°—60° Bast, +8.4-4-3.6 mgals; Atlantic Ocean -+6.444.7;
North and South America, —1.6--5.7; these averages do not suggest
that the oceans have consistently lower anomalies than the continents.

There is a fair chance that this problem can be resolved from the
observed orbit of the IGY satellites.

The following hypothetical train of events may serve to illustrate the
present considerations. Suppose that initially continents and oceans are

Table 3. Horizontal pressure difference in the mantle between continents and
oceans, free air gravity anomalies on continents and products of inertia of con-
tinents for various models

AP Ag I
dynes cm™2 milligals g cm?
(1) No compensation 92 x107 392 1564 x10°%°
(2) Isostasy 0 0.8 1,78 x 10%°
(3) No gravity anomalies —0.2X 107 0 1.48 x 1089
(4) No continental torque —1.1x 107 —4.5 0

compensated. The inertia of the continents exceeds that of the oceans
(I is positive) and the pole is south of Hawaii. The free-air gravity
anomaly over continents is about +1 mgal. Subsequently erosion takes
place, and the continents lose mass, the sea bottom gains mass. The
erosion is too rapid for isostatic compensation to be effective or perhaps
the stresses involved are below some critical values required for the
initiation of compensating currents in the mantle. As a result, the excess
inertia of the continents dwindles, and by the time the continents have
been eroded by 30 meters and the sedimentary blanket thickened by
something like 15 meters, the inertia per unit area is the same
for continents and oceans. Subsequent erosion reverses the polarity
of the principal axis and the pole of rotation moves rapidly towards
the present position. At the time of reversal the gravity anomaly over
continents is about —b5 mgals. Further erosion will stabilize the pole
in its new position. Uncompensated erosion by an additional 30 meters
would assure that the pole remain essentially in its present position
without being materially affected by icecaps and mountain formations.
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At the end of the erosional epoch, the isostatic state is again approached,
and the pole switches back to Hawaii.

The gravity data are not unfavorable to this hypothesis, but there
is some difficulty in reconciling the required departures from isostasy
with fluidity indicated by the damping of the wobble. A surface load
leads to an adjustment in the shape of the Earth. This involves local
deformation (high order spherical harmonics) as well as global deformation
(low order harmonics). The local adjustments take place relatively slowly,
the global adjustments occur rapidly. The products of inertia involve de-
formations of order 2, and so does the equatorial bulge. Hence the time
constant of isostatic adjustment of the inertia terms turns out to be the
same as the time constant 7 of polar wandering: 10 years according to
Bonpr and GoLp (see next section). In the case of a uniform sedimenta-
tion it follows that the departure from isostasy is due to sediments
deposited in 10 years. This is of the order 5 cm, and not 15 meters as
required. There is still the possibility that the uncompensated load is
maintained until some critical stress is exceeded. The elasto-viscous
model is then wrong. Boxpr and Gorp’s theory of the damping of the
wobble becomes doubtful, for certainly the stresses involved are then
far below the critical value.

But even if the Earth can maintain sufficient anisostasy to reverse
I, one would expect polar wandering towards Archangel at a rate of a
few tens of meters per year, unless by chance I is very near zero. This
is still too fast. To say that the distance between the present pole and
Archangel is too small to be significant is to imply that the values of d
and e in Table 1 do not differ significantly from zero. I think they do.

The rate of polar wandering

The observed damping time of the 14-month nutation (Chandler
wobble) has been estimated by Rupnick [11] as 10 years and by WALKER
and Young [13] as 10 to 30 years. Bonn: and Gorp [1] have presented
arguments as to why the damping must be due to dissipation in the
Karth’s mantle; if so, then according to the elasto-viscous model the
damping time and the time constant v of polar wandering are one and
the same, and accordingly the rate of polar wandering can be computed
for a given disturbance from equation (6). Using the value 7=10 years
it is embarrassingly simple to turn the Earth around. The Himalayas
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alone could do it in a 100 million years, and so could reasonable climatic
fluctuation in sea level. Even winds would have a non-negligible effect.

Numerical values appropriate to the 1000 fathom uniform continents
give a movement by 100 meters per year toward Vancouver. Astronomical
observations place an upper limit of 5 meters during the last 50 years.
The rate would slowly increase, being largest when the pole is in the Gulf
of Alaska, midway between the two principal poles; from then on polar
wandering diminishes. The actual rate can be found from equations (7)
and (10). The time required to travel most of the way to the Hawaii
pole is of the order (Appendix, Hq. 10)

Iy
— T
(@' —b"1
or 100,000 years. Paleomagnetic evidence places an upper limit of about

10° latitude during the last ten million years. In both instances the limits
are 1/1000 the derived values.

Inhomogeneities in the manile

The calculations so far have been made under the assumption that
the distribution of continents and oceans are the features most likely
to be responsible for the position of the pole.

Irregularities in the distribution of matter in the manitle could be an
important factor. JerrrEYS ([8], p. 177) has compiled a free-air anomaly
chart for the world. These anomalies represent departures from the
normal gravity, which contains terms in cos?0 and cos?26. There are
large areas for which gravity observations are lacking, and when these
become available the coefficient of cos?® and cos?20 in the formula
for normal gravity will be altered. This means that the plotted free-air
pattern is subject to uncertainty not only in regions where observations
are lacking, but in other regions as well.

The first thing one notices from Jeffreys’s chart is that the free-air
gravity anomalies bear no obvious resemblance to the continental
structure. If the continental structure were badly out of isostatic adjust-
ment, then there would be such a resemblance. The least forced
interpretation is that the confinental structure is nearly in isostatic
adjustment (though small but important departures of the kind discussed
in the previous section can by no means be ruled out), and that the
observed gravity anomalies have their source in the mantle. They
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might be an indication of bubbles of heavy and light material supported
by viscous forces in convection currents. The pressure along the bottom
of a boiling pot of porridge is not constant, nor is the gravity along the
surface. The observation that the pole is not now moving quickly implies
then that the distribution in the mantle has been essentially stationary
for at least 100,000 years.

The observed gravity pattern does not provide a unique solution
concerning the depth of the mass anomalies. Assume that they occur
at one fixed distance r; from the Earth’s center, and let o, designate
‘that part of the density anomaly per unit area that can be represented
by spherical harmonics of degree two. These are the only terms in the
density distribution that contribute to the products of inertia. Thus

D=[[[r*o(r) sin?@ cos & sin @ dr dO dd=r* o,
where
o= [[ 0 (0,D)sin26 cos O sin O dE dP .
Define
go= S/ ¢(0O,D) sin?@ cos O sin @ dO dD

and similarly g," by replacing sin @ with cos @. The free-airanomalies
at the surface due to o, are (JEFFREYS, [8], p. 171)

127ZG 1 3
Jo= 5 ] 0Og

To

and we can express D in terms of g,. It is convenient to introduce the

1 4
Earth’s moment of inertia, I,= gﬂf a?, its mass M= 370 a® and the

_ 4
mean gravity at the surface, g= — 7 Gry0.. Then
g y 3 (1154

5 7 5 71
D= alen G =gl G
Harmonic a,nélysis of Jeffreys’s chart gives
g,=—0.41 mgals , g5’ =2.10 mgals
so that .
D=—1.4(r,[ry)10%8 g cm?, E=6.9(r,[ry)10%8 g cm?

compared to

D=3.4x10%8 g cm? B=2.9x10%8 g cm?
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for the isostatically compensated crust. The ratio r,/ry varies from 1/2
at the bottom of the mantle to 1 at the top. The first thing to notice is
that the products of inertia of the mantle, as inferred from free-air gravity
anomalies, are of the same order as those of the crust; the second thing
is that they are not properly distributed in longitude to balance those
of the crust. It will be recalled that the isostatic balanced continents
tend to move the pole toward Vancouver. What is required for balance
are gravity anomalies with the extreme values of the second degree
harmonic distributed as follows:

130°W 50°E
Northern Hemisphere +5 mgals  —5 mgals
Southern Hemisphere —5 mgals 45 mgals

Such distribution cannot be ruled out on the basis of our present know-
ledge of gravity.

It should be pointed out that, according to the present hypothesis,
it is not accidental that the inertial terms in the mantle should be of
equal magnitude to those in the crust. Suppose for the moment those
in the mantle were much larger. Then the pole would rapidly adjust
80 as to reduce their magnitude, and in the final position only a small
residue would be left, just large enough to balance the crust.

If this explanation of the present position of the pole is the correct
one, then there are three setss of principal axes, that of the crust, that of
the mantle, and the combined set. The combined set then presumably
coincides with the true axis. Crust and mantle would twist relative to
one another, until eventually the axes of crust and mantle coincide with
each other and with the axis of rotation. The twisting motion might
be from 1000 to 10,000 times slower than polar wandering. First of all
the shear is larger because only a thin outer shell is involved, and secondly
the viscosity of the outer mantle may be larger than the average viscosity
of the Karth.

Discussion

For an elasto-viscous Earth with isostatically compéensated continents
and oceans the stable position of the pole is near Hawaii; if it were else-
where it would reach Hawaii probably in 100,000 years. The following
alternatives might account for the fact that the pole is not near Hawaii.
(1) The equatorial bulge is frozen. The pole then remains practically

15 — Geophysica 6:3
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where it is regardless of the distribution of continents and oceans;
Bonpr and Gorp’s treatment of the damping of the Chandler wobble
is not correct, and the problem remains to be solved. (2) The bulge is
fluid, and the pole is determined by the distribution of continents.
These are not balanced isostatically, but more than 30 meters have been
eroded from continents and deposited on the sea floor without com-
pensation. This scheme would place the stable pole much nearer the
observed position (but I think still too far away). There is no conflict
with observed gravity values, but it is difficult to assign sufficient
fluidity to account for the damping of the Chandler wobble and yet
achieve the required degree of anisostacy to reverse the polarity of the
principal axes. (3) There are mass anomalies in the mantle which together
with the distribution of land and sea determine the axis of rotation.
The associated gravity anomalies would be of the same order as those
observed, but the required pattern is quite different from the one drawn
by JEFFREYS. (4) I favor a still different alternative: the Barth is anelastic
in the sense that it behaves as an elastic solid for short-period
disturbances, and, given sufficient time, will adopt a shape appropriate
to an equivalent rotating fluid. This much it has in common with the
elasto-viscous model; but there are any number of laws which have such
an asymptotic behavior without requiring that the time constant of
nutational damping be identified with the time constant of polar
wandering. SCHEIDEGGER [12], for example, suggests that for time
intervals of hours to 15,000 years the Earth behaves as a »Kelvin body»
(spring and dashpot in series) with a »viscosity» of 10 em? sec™, whereas
for time intervals larger than 15,000 years it behaves as a »Bingham body»
(finite yield strength) with viscosity of 2x 102 cm?2 sec™l. For a 10
years damping time then the pole requires 10°X (2x 10%1/107)=2 X 10°
years to migrate to Hawaii; there is no discrepancy with astronomic
and paleo-magnetic observation, in fact there is no polar wandering
in the usual sense. — In all events some very serious doubts concerning
the elasto-viscous model have been raised by Carrn Ecrart during a
symposium at the Massachusetts Institute of Technology in September
1956, and these have their roots in the distinction between »deformation»
and »strainy (Bcrart, [3]). More recently Kwororr and MacDoNALD
(in press) have proved that no possible combination of springs and
dashpots can adequately portray the damping of seismic waves. It
appears that the extrapolation from nutational damping to polar
wandering is on shaky ground. Our dilemma is resolved if the time



Remarks concerning the present position of the pole 363

constant of polar wandering is increased by a factor 103 over what was
used in this paper; if the factor is larger than 105 there can be no polar
wandering.

Appendia
At time 0 the pole of rotation is at
x =0, y =0, z =1y .
&' =pry Y =l » 21273"0

in terms of present coordinates and principal axes 1espect1vely After a
time J¢ the pole is at

x =oduw, yzéy, 2 =Ty,
and
' =y, r9+a, S+, 8y,

with similar expressions for y', 2. The direction cosines of the new axis
are of the form y,+dy;, so that

@' =Sy o
Hence
a; 0z, dy=ry oy,
@y O+ Sy=T4 Oy
ag 0x+-f3 dy=1¢ Oys

We shall need to express the products of inertia in terms of the principal
system

D= 'myz=) m(B1x'+Poy +Bs2") (118 4y, ¥ +752)
=D mPyy, &2+ m By, Y24 D mBays 2

=Py B 0 —A) 4Py yy(C'+A4"— B') s y5(4’'+ B —C")] o
=171 (C"—A) 4By v, (C'—B).
Similarly
E=a f,(C"—A4")+ayy, (C'—B’) (9b)

Combining (6) (8) and (9) and setting K=1I/(Cy—4,) gives
0y, Koy Kp, p

—_— = ——f— —

ot T T
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K
=— [y (3482 (¢’ —a')+yaley ap--By fo)(¢' —6')]

K o,
= — [ (=91) (' =a")=pa(ps-3) (¢’ =]

dlny, K
— = 01 (¢ —a) e )]
Similarly
Slny, K
— = =) 1) (€ —D)]
Sny, K
5= A —a) (= 0)]
and

° (In yy—Iny)= = [('—a')—(c'—b)]=— = (@' —b") . (10)
ot 2 . T T
But y,/y,=tan &', so that
tan @' =tan @, e~ X' ~H) (11)

where ®; designates the east longitude of the pole (referred to principal
axes) at the present time, {=0. From the last two equations

P K
;Sgln (vsfye) = (0 —b')

Dividing by (10) yields

Oln (ysfys) b'—¢
Sln (yofys) &b

which reduces to equation (7) in the text.

=k—1
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